Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein weiterer Schritt zu atomaren Speichern: Wie Leitungselektronen zwischen atomaren Bits vermitteln

02.02.2010
Wie die renommierte Zeitschrift "Nature Physics" berichtet, ist es Wissenschaftlern der Universität Hamburg unter der Leitung von Prof. Roland Wiesendanger gelungen, die Richtungsabhängigkeit der magnetischen Kopplung zwischen einzelnen Atomen auf Oberflächen direkt zu vermessen.

Die in Hamburg experimentell ermittelte Magnetisierungsausrichtung von atomaren Bits verschiedenen Abstands und verschiedener Orientierung stimmt dabei erstaunlich gut mit der magnetischen Kopplung überein, die von Wissenschaftlern des Forschungszentrums Jülich an einem Supercomputer mit einem aufwendigen Modell berechnet wurde.

Dies stellt einen weiteren wichtigen Schritt in Richtung magnetischer atomarer Datenspeicher und neuartiger Spintronik-Bauelemente dar. Die Forschungsarbeiten hierzu werden u.a. durch die Hamburger Landesexzellenz-Initiative und einen Sonderforschungsbereich der Deutschen Forschungsgemeinschaft gefördert.

Hervorgerufen durch die immer zunehmende Miniaturisierung elektronischer Geräte und die stetig wachsende Flut digitaler Daten wird beständig nach Möglichkeiten gesucht, den Platz für die kleinste Speichereinheit, ein Bit, zu reduzieren, um Datenspeicher mit immer höherer Kapazität herstellen zu können. Bei der magnetischen Speichertechnologie gibt es das ultimative Ziel, irgendwann einmal die Information eines Bits in der magnetischen Ausrichtung eines einzelnen Atoms speichern zu können. Magnetische Atome verhalten sich wie winzige Kompassnadeln, deren Magnetisierung entweder nach oben (1) oder unten (0) zeigen kann. Aufgrund deren geringer räumlichen Ausdehnung ergäben sich dadurch immens hohe Speicherdichten, die für Jahrzehnte das Speicherplatzproblem lösen würden. Allerdings gibt es auf dem Weg dorthin vor allem zwei grundlegende Probleme: (I) die atomaren Bits schalten bei Raumtemperatur in Bruchteilen einer Sekunde zwischen den zwei Zuständen (0) und (1), wodurch die gespeicherte Information verloren geht; (II) bei zu kleinen Abständen von wenigen Nanometern koppeln benachbarte Bits, was ebenfalls zu einem Datenverlust führen kann.

Mittels der Methoden der modernen Oberflächenphysik lassen sich atomare Bits auf eine extrem flache Oberfläche eines Metalls aufbringen, die als Modellsystem eines atomaren Datenspeichers dienen. Wie die Hamburger Wissenschaftler schon früher demonstriert haben, kann das atomare Bit mit der magnetisch beschichteten Spitze eines Rastertunnelmikroskops ausgelesen werden.

Bereits vor einem halben Jahrhundert schlugen die Theoretiker Ruderman, Kittel, Kasuya und Yosida eine neue Art der Kopplung zwischen solchen magnetischen Atomen vor, die neben dipolarer Kopplung und direktem magnetischen Austausch als dritte fundamentale Wechselwirkung den Magnetismus im Festkörper bestimmt. Kommt ein Leitungselektron in die Nähe eines magnetischen Atoms, richtet es seinen Spin nach diesem aus. Bewegt sich das Elektron nun weiter durch den Festkörper, kann die Spinpolarisation des Elektrons wiederum eine Ausrichtung des magnetischen Momentes eines der nächsten Atome bewirken. Dadurch wird eine magnetische Kopplung hervorgerufen, die je nach Abstand zu paralleler oder antiparalleler Ausrichtung benachbarter Bits führt. Die nach den vier Entdeckern benannte RKKY-Kopplung ist vor allem in Festkörpern, die eine geringe Menge magnetischer Atome enthalten, aber auch in Seltenerdmetallen, die dominierende der drei Wechselwirkungen.

Die Leitungselektronen als Vermittler der RKKY-Wechselwirkung bestimmen dabei die Stärke und Richtungsabhängigkeit der Kopplung. Bisher wurden vereinfachende theoretische Modelle benutzt, mit denen die Kopplungsstärke erfolgreich in Volumenmaterialien vorausgesagt werden konnte. Nach diesen Modellen ist die Kopplung nur vom Abstand der zwei magnetischen Atome, nicht aber von ihrer Lage relativ zu den Kristallrichtungen abhängig. Obwohl eine Orientierungsabhängigkeit aufgrund der Kristallstruktur erwartet wurde, ist es experimentell bisher nicht gelungen, einen direkten Beweis dafür zu erbringen. Dies lag vor allem an der Unzulänglichkeit der bisher benutzten magnetischen Ausleseverfahren, die räumlich über einen großen Bereich und damit verschiedene Ausrichtungen mitteln.

Wie in der aktuellen Ausgabe der Zeitschrift "Nature Physics" berichtet wird, ist es nun in einer Zusammenarbeit von Wissenschaftlern der Universität Hamburg und des Forschungszentrums Jülich gelungen, die Richtungsabhängigkeit der RKKY-Kopplung direkt zu vermessen und mit einem aufwendigen Modell zu vergleichen [1]. Die in Hamburg experimentell ausgelesene Magnetisierungsausrichtung in Paaren von atomaren Bits verschiedenen Abstands und verschiedener Orientierung stimmt dabei erstaunlich gut mit der auf dem Supercomputer in Jülich gerechneten Kopplung überein. Es zeigt sich eine starke Abhängigkeit der RKKY-Kopplung von der Ausrichtung der zwei Bits, die man anhand der einfacheren Modelle nicht beschreiben kann.

Diese Erkenntnisse haben schließlich auch einen großen praktischen Nutzen für die zukünftige Entwicklung von Nanostrukturen aus einer größeren Anzahl einzelner magnetischer Atome. Mittels der Spitze des Rastertunnelmikroskops lassen sich die magnetischen Atome in einer nahezu beliebigen Struktur zusammenschieben. Mithilfe der gewonnenen Karte der RKKY-Kopplung lässt sich daher eine Nanostruktur mit maßgeschneiderter magnetischer Kopplung entwerfen und verwirklichen. Solche Nanostrukturen könnten interessante Eigenschaften im Hinblick auf zukünftige spintronische Bauelemente haben. Eine andere vielversprechende Möglichkeit besteht in ihrer Anwendung als Modellsystem für neuartige Rechenverfahren, die die Quantennatur der Bits ausnutzen (z. B. in Quantencomputern).

[1] Lihui Zhou, Jens Wiebe, Samir Lounis, Elena Vedmedenko, Focko Meier, Stefan Blügel, Peter H. Dederichs and Roland Wiesendanger: "Strength and directionality of surface Ruderman-Kittel-Kasuya-Yosida interaction mapped on the atomic scale", Nature Physics, published online: 31 January 2010.

doi:10.1038/nphys1514

Weitere Informationen:
Dipl.-Chem. Heiko Fuchs
Öffentlichkeitsarbeit
Department Physik
Sonderforschungsbereich 668
Universität Hamburg
Jungiusstr. 11a
20355 Hamburg
Tel.: (0 40) 4 28 38 - 69 59
Fax: (0 40) 4 28 38 - 24 09
E-Mail: hfuchs@physnet.uni-hamburg.de

Heiko Fuchs | idw
Weitere Informationen:
http://www.sfb668.de
http://www.nature.com/nphys/index.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Max-Planck-Princeton-Partnerschaft in der Fusionsforschung bestätigt
23.11.2017 | Max-Planck-Institut für Plasmaphysik

nachricht Magnetfeld-Sensor Argus „sieht“ Kräfte im Bauteil
23.11.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Kinderanästhesie aktuell: Symposium für Ärzte und Pflegekräfte

23.11.2017 | Veranstaltungsnachrichten

Seminar „Leichtbau im Automobil- und Maschinenbau“ im Haus der Technik Berlin am 16. - 17. Januar 2018

23.11.2017 | Seminare Workshops

Biohausbau-Unternehmen Baufritz erhält von „ Capital“ die Auszeichnung „Beste Ausbilder Deutschlands“

23.11.2017 | Unternehmensmeldung