Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was macht der Kristall, wenn man ihn spaltet?

02.02.2018

Auf verblüffende Weise können sich Atome reorganisieren, wenn man einen Kristall entlang bestimmter Richtungen spaltet. An der TU Wien konnte das nun sichtbar gemacht werden.

Die bemerkenswerte Festigkeit von Kristallen lässt sich auf atomarer Ebene leicht erklären: Positiv und negativ geladene Teilchen sitzen abwechselnd nebeneinander, in einer bestimmten geometrischen Anordnung, die sich unzählige Male wiederholt. Zwischen positiven und negativen Ionen im Kristall herrschen starke Anziehungskräfte, durch sie wird der Kristall zusammengehalten.


Die Labyrinth-Struktur auf der Oberfläche des Kristalls

TU Wien


Das Team: Michele Reticcioli (Universität Wien), Jan Hulva, Ulrike Diebold, Martin Setvin, Michael Schmid (alle TU Wien), v.l.n.r.

TU Wien

Doch wie sieht das auf der Oberfläche des Kristalls aus? Das hängt von der Richtung ab, in der man den Kristall schneidet. Dabei kann es zu komplizierten Effekten kommen, die sich auch für chemische Anwendungen nutzen lassen. Vermutungen dazu gab es schon lange – an der TU Wien gelang es nun, diese Effekte mit Rastertunnelmikroskopen und Rasterkraftmikroskopen abzubilden.

Ihre Daten konnten nun, gemeinsam mit Computerberechnungen der Universität Wien, eine Reihe bemerkenswerter Phänomene erklären. Untersucht wurde Kaliumtantalat, ein Kristall aus der Gruppe der Perovskite. Veröffentlicht wurden die Ergebnisse nun im Fachjournal „Science“, nützlich könnten sie für Technologien wie etwa die Gewinnung von Wasserstoff sein.

Gerade oder diagonal geschnitten

Etwas vereinfacht kann man sich die positiven und negativen Ladungen im Kristall vorstellen wie die schwarzen und weißen Felder auf einem Schachbrett: Entlang der Zeilen und Spalten wechseln sich schwarze und weiße Felder ab, doch wenn man das Muster entlang der Diagonalen betrachtet, sieht man abwechselnd rein schwarze und rein weiße Reihen.

Dasselbe kann man (in drei Dimensionen) im Kristall betrachten: „Spaltet man einen kubischen Kristall entlang einer passenden Richtung, dann müsste man, naiv betrachtet, eigentlich ausschließlich positive oder ausschließlich negative Ladungen an der Oberfläche finden – doch so ein Zustand wäre hochgradig instabil“, erklärt Prof. Ulrike Diebold, die Leiterin der Forschungsgruppe für Oberflächenphysik am Institut für Angewandte Physik der TU Wien.

In einem solchen Kristall, der aus rein positiv und rein negativ geladenen Schichten bestünde, würde sich bereits in einer kleinen Materialprobe eine gewaltige elektrische Spannung von Millionen Volt ergeben – man spricht von der „polaren Katastrophe“. Um das zu vermeiden, müssen sich die Ladungsträger irgendwie umorganisieren, doch wie sie das machen, war bisher nicht ganz klar.

„Es gibt unterschiedliche Möglichkeiten, wie die Oberfläche reagieren kann, wenn wir einen Kristall so spalten“, sagt Martin Setvin, der Erstautor der Publikation. „Die Elektronen können sich an bestimmten Stellen sammeln, es kann zu Verformungen des Kristallgitters kommen, es kann passieren, dass sich Atome von außen an die Schnittstelle anlagern.“

Von der Inselgruppe zum Labyrinth

Was man unter dem Rastertunnelmikroskop jedenfalls feststellen kann: Die Teilung des Kristalls verläuft nicht exakt zwischen einer positiv und einer negativ geladenen Schicht. Stattdessen bricht der Kristall zwischen zwei positiv geladenen Schichten, die Hälfte der negativ geladenen Schicht dazwischen geht auf die eine Seite, die andere Hälfte auf die andere. Diese negativen Inseln, die sich auf jeder Seite spontan ausbilden, bedecken genau die Hälfte der Oberfläche – somit ist die Gesamtoberfläche insgesamt elektrisch neutral.

Diese Inseln zeigen ein interessantes, unerwartetes Verhalten: Zunächst nehmen sie zufällige Formen an, ähnlich wie Inselgruppen im Meer. Doch wenn man die Temperatur der Oberfläche erhöht, werden die Atome mobiler und beginnen, ein zackiges Muster aus geraden Linien zu bilden, das am Ende aussieht wie ein Labyrinth. Die „Mauern“ dieses Labyrinths sind nur ein Atom hoch und vier bis fünf Atome breit, wie man auf den Mikroskop-Aufnahmen leicht sehen kann. Berechnungen zeigen, dass tatsächlich genau das die energetisch stabilste Konfiguration ist.

„Diese labyrinthartigen Strukturen haben technisch höchst vielversprechende Eigenschaften“, sagt Ulrike Diebold. „Das ist genau das was man will: Winzige Strukturen, in denen starke elektrische Felder auf atomarer Skala auftreten.“ Man kann sie etwa nutzen, um chemische Reaktionen zu ermöglichen, die nicht von alleine ablaufen würden – etwa das Spalten von Wasser, um Wasserstoff zu gewinnen.

„Solche Technologien kann man nur entwickeln, wenn es gelingt, die atomaren Vorgänge direkt zu beobachten, zu untersuchen und zu verstehen“, betont Martin Setvin. „Deshalb ist für uns die Rasterkraft- und Rastertunnelmikroskopie so wichtig. Erst durch hochauflösende Bilder, auf denen man einzelne Atome beobachten kann, lässt sich verstehen, welche komplizierten Vorgänge auf der Kristalloberfläche ablaufen.“
Das Rasterkraft-Tunnelmikroskop konnte mit den Mitteln des Wittgenstein-Preises (vergeben vom österreichischen Wissenschaftsfonds FWF) angeschafft werden, mit dem Diebold 2013 ausgezeichnet wurde.

Kontakt:

Prof. Ulrike Diebold
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13425
ulrike.diebold@tuwien.ac.at

Martin Setvin, PhD
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8
T: +43-1-58801-13470
martin.setvin@tuwien.ac.at

Dr. Florian Aigner | Technische Universität Wien
Weitere Informationen:
http://www.univie.ac.at/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics