Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was das Proton umtreibt

05.08.2014

Teilchenphysiker der Universität Tübingen weisen erstmals den Gluonen eine wichtige Rolle beim Drehimpuls der Atombausteine zu

Protonen und Neutronen sind Bausteine aller Atomkerne und damit aller Materie. Sie setzen sich ihrerseits aus kleineren Teilchen zusammen, jeweils drei Quarks, die keine eigene innere Struktur aufweisen und durch sogenannte Gluonen aneinander gebunden werden.

Das Proton besitzt außerdem einen Drehimpuls („Spin“), von dem Physiker lange annahmen, dass er in erster Linie von den Quarks verursacht wird. 1987 jedoch ergab ein Experiment an der Großforschungseinrichtung CERN, dass der Spin des Protons nur zu einem kleinen Teil durch die Spins der Quarks entsteht ‒ und die Teilchenphysik stürzte in die „Spin-Krise“. Nun haben Wissenschaftler der Universität Tübingen erstmals festgestellt, dass den Gluonen eine wichtige Rolle zukommt und sie möglicherweise den Hauptanteil des Spins tragen.

Dr. Marco Stratmann und Professor Werner Vogelsang vom Institut für Theoretische Physik der Universität Tübingen und ihre Kollegen Professor Daniel de Florian und Professor Rodolfo Sassot von der Universidad de Buenos Aires, Argentinien, stützten sich bei ihren Untersuchungen auf neue experimentelle Daten des Teilchenbeschleunigers RHIC in den USA, an dem man Protonen zur Kollision bringt.

Gluonen sind die Träger der starken Kraft, eine der vier fundamentalen Wechselwirkungen in der Natur, und tragen maßgeblich zu diesen Kollisionen bei. So konnten die Wissenschaftler in umfangreichen computergestützten Studien die Spinverteilung von Gluonen im Proton bestimmen. Die Ergebnisse wurden kürzlich in der Zeitschrift „Physical Review Letters“ (Ausgabe 113, Seite 012001 (2014)) veröffentlicht.

Den Spin des Protons stellt man sich oft ähnlich wie die Rotation eines Kreisels vor. Tatsächlich wird das Proton jedoch nicht wie ein Kreisel von außen angestoßen, es handelt sich vielmehr um ein rein quantenmechanisches Phänomen: einen Drehimpuls, der den atomaren und subatomaren Teilchen in der Natur als Eigenschaft innewohnt und ebenso fundamental ist wie die Masse oder die elektrische Ladung eines Teilchens. Der Spin des Protons bildet zum Beispiel auch die Grundlage für die Kernspintomografie, mit der man detaillierte Aufnahmen aus dem Körperinnern erhält.

In ihrer Studie zeigen die Wissenschaftler nun, dass die Gluonen eine wichtige Rolle für den Protonenspin spielen und möglicherweise den bislang unerklärten Rest des Spins tragen. „Auch wenn noch weitere Daten und Analysen notwendig sein werden, um den Ursprung des Spins detailliert zu verstehen und die experimentellen und theoretischen Unsicherheiten zu reduzieren, ist dieses neue Ergebnis ein wichtiger Fortschritt“, sagt Marco Stratmann. „Nach mehr als 25 Jahren zeichnet sich endlich eine Lösung für die Spin-Krise ab, und wir können das Proton, das so fundamental wichtig für den Aufbau aller Materie ist, wieder etwas besser verstehen.“

Publikation: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.012001

Kontakt:
Prof. Dr. Werner Vogelsang (derzeit per Mail erreichbar)
Universität Tübingen
Institut für Theoretische Physik
Auf der Morgenstelle 14 ∙ 72076 Tuebingen
(Telefon +49 7071 29-76372)
werner.vogelsang@uni-tuebingen.de

Antje Karbe | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Berichte zu: Drehimpuls Gluonen Materie Physiker Protonen Spin Studie Teilchen Teilchenbeschleunigers Zeitschrift

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics