Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wachstumsbremse für Röntgenlaser

12.09.2013
Jenaer Physiker von Universität und Helmholtz-Institut erzeugen polarisierte Röntgenpulse und ebnen damit den Weg für die Entwicklung einer neuen Generation von Röntgenquellen

Wollen Forscher heute ins Innere von Atomen schauen, den Ablauf chemischer Reaktionen in Echtzeit verfolgen oder Prozesse an Nanomaterialien beobachten, dann nutzen sie intensive Röntgenstrahlung.

Denn mit ultrakurzen Röntgenpulsen lassen sich extrem schnelle Vorgänge bis in den Nanometer-Bereich auflösen. Erzeugt werden solche Röntgenpulse in riesigen Teilchenbeschleunigern, etwa dem Röntgenlaser FLASH des Hamburger DESY. Doch die Messzeit an diesen Großanlagen ist begrenzt und ihre Nutzung für die Forscher aus aller Welt – die an den Beschleunigern quasi „Schlange stehen“ müssen – enorm teuer.

„Derzeit sind gerade die ersten Röntgenquellen der vierten Generation im Einsatz und weitere werden in den nächsten Jahren folgen“, sagt Prof. Dr. Christian Spielmann von der Friedrich-Schiller-Universität Jena. „Allerdings“, so Spielmann weiter, „zeichnet sich bislang jede neue Generation durch eine noch größere Anlage aus, die wieder um Vieles teurer als ihr Vorgänger ist.“

Der Jenaer Physiker hat gemeinsam mit Kollegen der Universitäten Jena und Düsseldorf sowie des Jenaer Helmholtz-Instituts jetzt einen wichtigen Schritt zur Entwicklung einer neuen – der fünften – Generation von Röntgenquellen vollzogen. „Diese neue Reihe soll vor allem kompakter und dadurch kostengünstiger sein“, erläutert Spielmann. Wie das Forscherteam in der aktuellen Ausgabe der Fachzeitschrift „Nature Communications“ schreibt, ist es ihm gelungen, Röntgenpulse mit exakt definierten Eigenschaften zu erzeugen – und das nicht an einem Teilchenbeschleuniger sondern im kleinen Labormaßstab (DOI: 10.1038/ncomms3421).

Dazu fokussieren die Forscher ultrakurze Laserpulse in einen Strahl aus Heliumgas. Dabei werden Elektronen aus den Heliumatomen gerissen und auf nahezu Lichtgeschwindigkeit beschleunigt. „Gleichzeitig beginnen die Elektronen zu schwingen“, erklärt Michael Schnell, Doktorand in Spielmanns Team. „Diese Schwingung führt schließlich zur Emission von Röntgenstrahlung, deren Eigenschaften von der genauen Bewegung der Elektronen abhängen“, so der Erstautor der Studie.

In ihrer Publikation haben die Jenaer Forscher gezeigt, dass sie die Schwingungsrichtung der beschleunigten Elektronen durch die Eigenschaften des eingesetzten Laserimpulses exakt bestimmen und kontrollieren können. „Damit ist die Grundlage geschaffen, diese im kleinen Maßstab erzeugten Röntgenpulse für diverse Anwendungen nutzbar zu machen“, ist Spielmann überzeugt. So sei die Schwingungsrichtung der Elektronen einerseits wichtig für die Ankopplung an weitere Beschleuniger. „Zum anderen bestimmt sie den Polarisationszustand der resultierenden Röntgenstrahlung.“ In ihren Experimenten konnten die Jenaer Forscher zum ersten Mal messen, dass die Elektronen vorzugsweise in einer Ebene schwingen und daher linear polarisiert sind. Linear polarisierte Röntgenimpulse lassen sich künftig beispielsweise dazu nutzen, magnetische Strukturen zu analysieren und mit diesen Erkenntnissen magnetische Speichermedien zu verbessern.

Original-Publikation:
Michael Schnell et al. Optical control of hard X-ray polarization by electron injection in a laser wakefield accelerator, Nature Communications 2013, DOI: 10.1038/ncomms3421
Kontakt:
Dipl. Phys. Michael Schnell
Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947268
E-Mail: Michael.Schnell.1[at]uni-jena.de
Prof. Dr. Christian Spielmann
Institut für Optik und Quantenelektronik der Friedrich-Schiller-Universität Jena
Max-Wien-Platz 1, 07743 Jena
Tel.: 03641 / 947230
E-Mail: christian.spielmann[at]uni-jena.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie