Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Waage für unsere kosmischen Nachbarn

25.08.2010
Zeitreihenmessungen von Pulsaren eröffnen einen neuen Weg, um Planetenmassen im Sonnensystem zu bestimmen

Eine Waage muss nicht unbedingt die Schwerkraft messen. Ein internationales Team um Forscher des Bonner Max-Planck-Instituts für Radioastronomie nutzt vielmehr Radiosignale von vier Pulsaren, um Planeten unseres Sonnensystems zu wiegen, und zwar erstmals inklusive ihrer Monde und Ringsysteme. Die Forscher bestimmen die Planetenmassen dabei auf 0,03 Promille der Erdmasse oder ein Zehnmillionstel der Masse von Jupiter genau. Das entspricht zwar immer noch einem Fehler von 200 Billiarden Tonnen, dennoch lassen sich mit dem Verfahren schon jetzt die derzeit gebräuchlichen Massewerte der Planeten überprüfen. Weiter verfeinert soll die neue Planetenwaage die bekannten Massen sogar präzisieren und so die Planung von Weltraummissionen erleichtern. Vor allem aber ermöglicht es die Methode, Gravitationswellen aufzuspüren. (Astrophysical Journal, 24. August 2010)


Schematische Darstellung des Messverfahrens: Die Massen von Sonne und Planeten im Sonnensystem beeinflussen die Ankunftszeit der Pulsarsignale auf der Erde. Über die Korrektur der Zeitfehler der Pulsarsignale lassen sich die Massen der Planeten mit hoher Genauigkeit abschätzen. Bild: David Champion


Radioteleskope, mit denen die Zeitreihenmessungen der Pulsare vorgenommen wurden: Parkes-64m-Teleskop (links), Effelsberg-100m-Teleskop (Mitte), Arecibo-305m-Teleskop (rechts). Bild: CASS, MPIfR, NAIC

Gewöhnlich bestimmen Astronomen die Masse eines Planeten, indem sie den Weg eines Mondes oder einer Raumsonde um den Himmelskörper verfolgen. Wie stark dabei die Bahn gekrümmt und das Objekt beschleunigt wird, verrät ihnen, mit welcher Anziehungskraft und folglich mit welcher Masse der Planet an dem kosmischen Passanten zieht.

Nun bestimmen Forscher aus Australien, Deutschland, USA, Großbritannien und Kanada Planetenmassen mit Hilfe von Radiosignalen von Pulsaren. Pulsare sind Sterne geringen Durchmessers mit sehr hoher Dichte, die sich extrem schnell um ihre eigene Achse drehen und dabei Radiopulse abgeben, und das in einem sehr gleichmäßigen Takt. "Auf diese Weise haben wir zum ersten Mal Planeten komplett gewogen - und zwar jeweils das gesamte System inklusive aller Monde und Ringe", sagt David Champion, Forscher am Max-Planck-Institut für Radioastronomie und Leiter des Forschungsteams. "Außerdem tragen wir mit der neuen unabhängigen Methode dazu bei, vorhandene Ergebnisse zu überprüfen, und unterstützen damit die Arbeit der Planetenforscher."

Das Team nutzt aus, dass Pulsare ihre Signale mit einer sehr konstanten Taktrate abgeben. Auf der Erde lässt sich dieser Takt allerdings nicht exakt messen, da sich die Erde um die Sonne dreht und sich dabei mal auf die Pulsare zu, und mal von ihnen weg bewegt. So werden die Messungen der Taktrate verzerrt, ganz so wie ein Zugreisender entgegenkommende Züge in kürzerem Abstand wahrnimmt als sie tatsächlich verkehren.

Nur mit korrekten Planetenmassen stimmt der Takt der Pulsar-Signale

Um die tatsächliche Pulsrate der Pulsare zu bestimmen, müssen die Forscher deren Verzerrung korrigieren und brauchen dafür einen Bezugspunkt. Den finden sie im Massenzentrum des Sonnensystems, dem so genannten Baryzentrum oder Rotationszentrum für alle Planeten. Sie berechnen also, wann die Pulse dort eintreffen. Dafür wiederum müssen die Astrophysiker die genaue Position des Rotationszentrums relativ zur Erde kennen. Die Position des Baryzentrums hängt von den genauen Positionen und Massen der Sonne und der Planeten ab.

In einem ersten Schritt berechnen die Astrophysiker die Lage des Rotationszentrums mit Tabellen der Planetenpositionen am Himmel, den sogenannten Ephemeriden, sowie mit den Werten für die Planetenmassen, die bereits mit anderen Methoden gemessen wurden. Nun korrigieren sie die Laufzeiten der Radiosignale, die ihre Teleskope auf der Erde registrieren, anhand dieses Wertes. Stimmt die berechnete Position des Baryzentrums nicht, treten auch in der kalkulierten Pulsrate am Baryzentrum Verzerrungen auf. Diese wiederholen sich regelmäßig, und zwar mit einem Takt, den die Umlaufperiode der Planeten um die Sonne vorgibt. Mit der Position der Planeten zueinander verändert sich nämlich auch die Lage des Rotationszentrums relativ zur Sonne. Diese Schwankungen können die Astrophysiker mit falschen Planetenmassen aber nicht richtig berechnen.

Am Muster des Fehlers erkennen die Forscher also, welcher Planet bislang für zu leicht oder schwer befunden wurde. "Wenn die Massenbestimmung für Jupiter und seine Monde falsch ist, sehen wir zum Beispiel ein Muster in den Zeitfehlern der Pulsarsignale, das sich über jeweils zwölf Jahre wiederholt", sagt Dick Manchester vom australischen Forschungsinstitut CSIRO Astronomy and Space Science (CASS). Zwölf Jahre entsprechen der Zeit eines Umlaufs von Jupiter um die Sonne. In einem iterativen Verfahren - also immer wieder neuen Rechnungen mit weiter angepassten Massewerten - korrigieren sie die Jupitermasse, bis die Pulsrate am Baryzentrum nicht mehr schwankt. Mit diesem Rückkopplungsprozess ermitteln die Astronomen die Planetenmassen. Und je mehr Pulsraten von unterschiedlichen Pulsaren sie verwenden, desto genauer werden die Werte.

In der aktuellen Arbeit nutzten die Forscher zunächst Beobachtungsdaten von insgesamt vier Pulsaren. Damit bestimmten sie die Massen der Planeten Merkur, Venus, Mars, Jupiter und Saturn jeweils inklusive ihrer Monde und Ringsysteme. Die meisten dieser Beobachtungen machten sie mit dem 64-Meter-Radioteleskop im australischen Parkes, zogen aber auch Messungen mit dem 100-Meter-Teleskop in Effelsberg sowie dem Teleskop in Arecibo auf Puerto Rico hinzu, dessen Spiegel sogar 305 Meter misst.

Messungen an weiteren Pulsaren erhöhen die Genauigkeit

Die Planetenmassen, die sie anhand dieser Daten berechneten, stimmen sehr gut mit den Werten überein, die aus Bahnen von Raumsonden ermittelt wurden. Dabei erhielten sie für das System von Jupiter und seiner sämtlichen Monde mit 9,547921(2) x 10-4 Sonnenmassen ein deutlich exakteres Resultat als die Werte, die sich anhand der Vorbeiflüge der Pioneer- und Voyager-Raumsonden ergaben. Das Ergebnis ist zwar etwas weniger genau als das der Raumsonde Galileo, stimmt aber damit innerhalb der Fehlergrenzen überein.

Bislang macht die Methode noch einen Fehler von 0,03 Promille der Erdmasse oder einem Zehnmillionstel der Jupitermasse, also 200 Billiarden Tonnen, lässt sich aber mit Messungen an weiteren Pulsaren noch verfeinern. "Mit Beobachtungen von insgesamt 20 Pulsaren über einen Zeitraum von sieben Jahren könnte man die Masse des Jupitersystems genauer bestimmen als mit jeder Raumsonde", sagt David Champion. 13 Jahre Beobachtungszeit bräuchten die Radioastronomen, um für die Saturnmasse einen genaueren Werte als den bekannten zu erhalten.

"Kurzfristig wird die Massenbestimmung mit Hilfe von Raumsonden zwar die genauesten Resultate für einzelne Planeten liefern", sagt Michael Kramer, Direktor am Max-Planck-Institut für Radioastronomie und Leiter der Forschungsgruppe Radioastronomische Fundamentalphysik: "Aber die Pulsarmethode ist für Planeten unverzichtbar, die noch nicht von Raumsonden besucht worden sind." Außerdem ließen sich mit ihr die kombinierten Massen von Planeten und ihren Monden bestimmen.

In erster Linie wollen die Bonner Radioastronomen und ihre Kollegen weltweit mit den genauen Pulsraten der Pulsare aber ein ganz anderes Problem der Astrophysik angehen: "Wir Astronomen benötigen die extrem genauen Zeitreihenmessungen von Pulsaren, um nach Gravitationswellen zu jagen, wie sie Einsteins Allgemeine Relativitätstheorie vorhersagt", sagt Michael Kramer: Gravitationswellen entstehen, wenn sich das Gravitationsfeld ändert und verzerren das Raumzeit-Kontinuum. Sie sind extrem schwach, und wenn überhaupt nur nach der Verschmelzung zweier schwarzer Löcher oder ähnlichen kosmischen Großereignissen nachweisbar. Auch in winzigen Verzerrungen im Takt der Pulsar-Signale, die Radioteleskope messen, sollten sie sich bemerkbar machen. "Nachweisen können wir sie aber nur, wenn wir alle potenziellen Fehlerquellen ausschalten", sagt Michael Kramer: "Also müssen wir auch die Verzerrungen korrigieren, die falsche Planetenmassen in der Pulsrate am Baryzentrum hervorrufen."

Originalveröffentlichung:

D.J. Champion, G.B. Hobbs, R.N. Manchester, R.T. Edwards, D.C. Backer, M. Bailes, N.D.R. Bhat, S. Burke Spoloar, W. Coles, P.B. Demorest, R.D. Ferdman, W.M. Folkner, A.W. Hotan, M. Kramer, A.N. Lommen, D.J. Nice, M.B. Purver, J.M. Sarkissian, I.H. Stairs, W. van Straten, J.P.W. Verbiest, D.R.B. Yardley
Measuring the mass of solar-system planets using pulsar timing
Astrophysical Journal, 24. August 2010
Weitere Informationen erhalten Sie von:
Dr. David Champion
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +44 7831 710 456
E-Mail: davidjohnchampion@gmail.com
Dr. Norbert Wex
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-503
E-Mail: wex@mpifr-bonn.mpg.de
Dr. Norbert Junkes
Max-Planck-Institut für Radioastronomie, Bonn
Tel.: +49 228 525-399
E-Mail: njunkes@mpifr-bonn.mpg.de

Barbara Abrell | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gravitationswellen als Sensor für Dunkle Materie
06.12.2016 | Max-Planck-Institut für Kernphysik

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften