Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorsicht Stauende! Wie ein Molekül-Stau die Zellteilung beeinflusst

07.11.2011
Zelluläre Prozesse sind sehr komplex und werden seit langem in interdisziplinären Projekten erforscht, unter anderem von Biologen und Physikern.

Mit einem der zahlreichen Teilaspekte rund um das „Leben“ einer Zelle befasst sich auch die Arbeitsgruppe von Erwin Frey, Professor für Statistische und Biologische Physik an der Ludwig-Maximilians-Universität München und Mitglied des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM).

Gemeinsam mit seinen Mitarbeitern Anna Melbinger und Louis Reese untersucht der Wissenschaftler, wie sogenannte molekulare Motoren mit dem Gerüst der Zelle zusammenarbeiten, dem Zytoskelett. Das Zytoskelett besteht aus vielen faserförmigen Strukturen, den Mikrotubuli. Die Motoren oder Motorproteine bewegen sich entlang dieser Filamente und transportieren zum einen große Makromoleküle durch die Zelle.

Zum anderen können sie, am Ende der Mikrotubuli sitzend, als Signal- oder Regulationsmoleküle wirken. Anhand eines theoretischen Modells, das „Stauphänomene“ berücksichtigt, konnten die Biophysiker nun zeigen, dass ein Stau von Motorproteinen auf einem Mikrotubulus die Abbauaktivität der Motoren gravierend beeinflußt. (Biophysical Journal, 2. November 2011)

Frey und seine Mitarbeiter erforschen Motoren, die während der Zellteilung unter anderem die Länge von Mikrotubuli steuern. Zellen, denen diese Motoren fehlen, können sich nicht einwandfrei teilen. Warum kann ein einziges fehlendes Molekül, das Motormolekül, so gravierende Auswirkungen nach sich ziehen? Diese Frage stellten sich die Biophysiker und studierten die detaillierte Funktionsweise des Moleküls sowie seine möglichen Aufgaben während der Zellteilung. Der Schwerpunkt lag dabei auf dem Zusammenspiel von Mikrotubuli und den Motoren, die Mikrotubuli abbauen (depolymerisieren). Dazu benutzten Frey und seine Mitarbeiter ein theoretisches Modell, das „Stauphänomene“ berücksichtigt.

Anhand dieses Modells konnten die Biophysiker zeigen, dass ein Stau von Motorproteinen auf einem Mikrotubulus die Abbauaktivität der Motoren gravierend beeinflußt. Entscheidend ist dabei, wie viele Motorproteine sich in der umgebenden Lösung (dem Zytosol) befinden. Ab einer bestimmten kritischen Konzentration von Motoren bilden sich Staus an der Spitze des Mikrotubulus. Sobald ein Motor dort seine Abbauarbeit getan hat, diffundiert er mit dem abgelösten Mikrotubulus-Baustein in die Lösung. Durch den Stau an Motorproteinen ist aber sofort Nachschub zur Stelle. So ist dann für die Abbaurate alleine die Geschwindigkeit entscheidend, mit der das einzelne Motorprotein den Mikrotubulus abbaut.

Ganz anders sieht es aus, wenn deutlich weniger Motorproteine in der Lösung vorhanden sind. In diesem Fall wird der Nachschub an Motorproteinen zum begrenzenden Faktor. Die Abbaugeschwindigkeit richtet sich dann nur noch danach, wie schnell und wie viel Nachschub an Motoren zum Mikrotubulus-Ende kommt. Somit entwickelt das Kollektiv der Motorproteine bei niedriger Konzentration eine ganz andere Abbaudynamik als bei höherer Konzentration. „Aufgrund bestehender Experimente wussten wir, dass diese kollektiven Effekte im System wichtig sind. Aber überrascht hat uns, dass die Eigenschaften der einzelnen Moleküle dabei zurücktreten“ berichtet Louis Reese, Erstautor der Studie.

Mit ihren Berechnungen tragen die Münchner Physiker dazu bei, dass bestehende Experimente zum Abbau der Mikrotubuli besser verstanden werden. Ein interessantes Phänomen, das seit einiger Zeit diskutiert wird, ist zudem, dass die Abbaugeschwindigkeit von der Länge der Mikrotubuli abhängt. Grund dafür ist die Ansammlung von Motoren entlang des Filaments: Je länger der Mikrotubulus, desto mehr Motorproteine können daran binden. Das theoretische Modell der Münchner Physiker erklärt die grundlegenden funktionellen Eigenschaften in diesem System. Auf diese Weise setzt es die existierenden experimentellen Ergebnisse in einen größeren Zusammenhang.

„Mit dieser Arbeit spielen wir Theoretiker den Ball zurück an die Experimentatoren.“, meint Erwin Frey. „Solche minimalen funktionellen Einheiten zu identifizieren und zu begreifen ist essentiell für das Verständnis von biologischen Systemen. Dabei spielt die Zelle mit ihren zahlreichen Funktionen und Bausteinen die zentrale Rolle. Sie zu verstehen ist ein erklärtes Ziel von Biologie und Biophysik“.

Die Forschungsarbeit wurde unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (SFB 863) und des Exzellenzclusters Nanosystems Initiative Munich (NIM).

Publikation:
Crowding of molecular motors determines microtubule depolymerization
Louis Reese, Anna Melbinger, and Erwin Frey
Biophysical Journal, Volume 101, Issue 9, 2190-2200, 2. November 2011
DOI: 10.1016/j.bpj.2011.09.009
Ansprechpartner:
Prof. Dr. Erwin Frey
Ludwig-Maxmilians-Universität (LMU) München
Lehrstuhl für Statistische und Biologische Physik
Arnold-Sommerfeld-Center für Theoretische Physik, Center for NanoScience (CeNS) und Exzellenzcluster Nanosystems Initiative Munich (NIM)
Tel.: 089 / 2180 – 4537
Fax: 089 / 2180 – 4538
E-Mail: frey@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gravitationswellen als Sensor für Dunkle Materie
06.12.2016 | Max-Planck-Institut für Kernphysik

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften

Diabetesforschung: Neuer Mechanismus zur Regulation des Insulin-Stoffwechsels gefunden

06.12.2016 | Biowissenschaften Chemie

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie