Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorsicht Stauende! Wie ein Molekül-Stau die Zellteilung beeinflusst

07.11.2011
Zelluläre Prozesse sind sehr komplex und werden seit langem in interdisziplinären Projekten erforscht, unter anderem von Biologen und Physikern.

Mit einem der zahlreichen Teilaspekte rund um das „Leben“ einer Zelle befasst sich auch die Arbeitsgruppe von Erwin Frey, Professor für Statistische und Biologische Physik an der Ludwig-Maximilians-Universität München und Mitglied des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM).

Gemeinsam mit seinen Mitarbeitern Anna Melbinger und Louis Reese untersucht der Wissenschaftler, wie sogenannte molekulare Motoren mit dem Gerüst der Zelle zusammenarbeiten, dem Zytoskelett. Das Zytoskelett besteht aus vielen faserförmigen Strukturen, den Mikrotubuli. Die Motoren oder Motorproteine bewegen sich entlang dieser Filamente und transportieren zum einen große Makromoleküle durch die Zelle.

Zum anderen können sie, am Ende der Mikrotubuli sitzend, als Signal- oder Regulationsmoleküle wirken. Anhand eines theoretischen Modells, das „Stauphänomene“ berücksichtigt, konnten die Biophysiker nun zeigen, dass ein Stau von Motorproteinen auf einem Mikrotubulus die Abbauaktivität der Motoren gravierend beeinflußt. (Biophysical Journal, 2. November 2011)

Frey und seine Mitarbeiter erforschen Motoren, die während der Zellteilung unter anderem die Länge von Mikrotubuli steuern. Zellen, denen diese Motoren fehlen, können sich nicht einwandfrei teilen. Warum kann ein einziges fehlendes Molekül, das Motormolekül, so gravierende Auswirkungen nach sich ziehen? Diese Frage stellten sich die Biophysiker und studierten die detaillierte Funktionsweise des Moleküls sowie seine möglichen Aufgaben während der Zellteilung. Der Schwerpunkt lag dabei auf dem Zusammenspiel von Mikrotubuli und den Motoren, die Mikrotubuli abbauen (depolymerisieren). Dazu benutzten Frey und seine Mitarbeiter ein theoretisches Modell, das „Stauphänomene“ berücksichtigt.

Anhand dieses Modells konnten die Biophysiker zeigen, dass ein Stau von Motorproteinen auf einem Mikrotubulus die Abbauaktivität der Motoren gravierend beeinflußt. Entscheidend ist dabei, wie viele Motorproteine sich in der umgebenden Lösung (dem Zytosol) befinden. Ab einer bestimmten kritischen Konzentration von Motoren bilden sich Staus an der Spitze des Mikrotubulus. Sobald ein Motor dort seine Abbauarbeit getan hat, diffundiert er mit dem abgelösten Mikrotubulus-Baustein in die Lösung. Durch den Stau an Motorproteinen ist aber sofort Nachschub zur Stelle. So ist dann für die Abbaurate alleine die Geschwindigkeit entscheidend, mit der das einzelne Motorprotein den Mikrotubulus abbaut.

Ganz anders sieht es aus, wenn deutlich weniger Motorproteine in der Lösung vorhanden sind. In diesem Fall wird der Nachschub an Motorproteinen zum begrenzenden Faktor. Die Abbaugeschwindigkeit richtet sich dann nur noch danach, wie schnell und wie viel Nachschub an Motoren zum Mikrotubulus-Ende kommt. Somit entwickelt das Kollektiv der Motorproteine bei niedriger Konzentration eine ganz andere Abbaudynamik als bei höherer Konzentration. „Aufgrund bestehender Experimente wussten wir, dass diese kollektiven Effekte im System wichtig sind. Aber überrascht hat uns, dass die Eigenschaften der einzelnen Moleküle dabei zurücktreten“ berichtet Louis Reese, Erstautor der Studie.

Mit ihren Berechnungen tragen die Münchner Physiker dazu bei, dass bestehende Experimente zum Abbau der Mikrotubuli besser verstanden werden. Ein interessantes Phänomen, das seit einiger Zeit diskutiert wird, ist zudem, dass die Abbaugeschwindigkeit von der Länge der Mikrotubuli abhängt. Grund dafür ist die Ansammlung von Motoren entlang des Filaments: Je länger der Mikrotubulus, desto mehr Motorproteine können daran binden. Das theoretische Modell der Münchner Physiker erklärt die grundlegenden funktionellen Eigenschaften in diesem System. Auf diese Weise setzt es die existierenden experimentellen Ergebnisse in einen größeren Zusammenhang.

„Mit dieser Arbeit spielen wir Theoretiker den Ball zurück an die Experimentatoren.“, meint Erwin Frey. „Solche minimalen funktionellen Einheiten zu identifizieren und zu begreifen ist essentiell für das Verständnis von biologischen Systemen. Dabei spielt die Zelle mit ihren zahlreichen Funktionen und Bausteinen die zentrale Rolle. Sie zu verstehen ist ein erklärtes Ziel von Biologie und Biophysik“.

Die Forschungsarbeit wurde unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (SFB 863) und des Exzellenzclusters Nanosystems Initiative Munich (NIM).

Publikation:
Crowding of molecular motors determines microtubule depolymerization
Louis Reese, Anna Melbinger, and Erwin Frey
Biophysical Journal, Volume 101, Issue 9, 2190-2200, 2. November 2011
DOI: 10.1016/j.bpj.2011.09.009
Ansprechpartner:
Prof. Dr. Erwin Frey
Ludwig-Maxmilians-Universität (LMU) München
Lehrstuhl für Statistische und Biologische Physik
Arnold-Sommerfeld-Center für Theoretische Physik, Center for NanoScience (CeNS) und Exzellenzcluster Nanosystems Initiative Munich (NIM)
Tel.: 089 / 2180 – 4537
Fax: 089 / 2180 – 4538
E-Mail: frey@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

200 Weltneuheiten beim Innovationstag Mittelstand in Berlin

26.04.2017 | Veranstaltungen

123. Internistenkongress: Wie digitale Technik die Patientenversorgung verändert

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Akute Myeloische Leukämie: Ulmer erforschen bisher unbekannten Mechanismus der Blutkrebsentstehung

26.04.2017 | Biowissenschaften Chemie

Naturkatastrophen kosten Winzer jährlich Milliarden

26.04.2017 | Interdisziplinäre Forschung

Zusammenhang zwischen Immunsystem, Hirnstruktur und Gedächtnis entdeckt

26.04.2017 | Biowissenschaften Chemie