Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorsicht Stauende! Wie ein Molekül-Stau die Zellteilung beeinflusst

07.11.2011
Zelluläre Prozesse sind sehr komplex und werden seit langem in interdisziplinären Projekten erforscht, unter anderem von Biologen und Physikern.

Mit einem der zahlreichen Teilaspekte rund um das „Leben“ einer Zelle befasst sich auch die Arbeitsgruppe von Erwin Frey, Professor für Statistische und Biologische Physik an der Ludwig-Maximilians-Universität München und Mitglied des Exzellenzclusters „Nanosystems Initiative Munich“ (NIM).

Gemeinsam mit seinen Mitarbeitern Anna Melbinger und Louis Reese untersucht der Wissenschaftler, wie sogenannte molekulare Motoren mit dem Gerüst der Zelle zusammenarbeiten, dem Zytoskelett. Das Zytoskelett besteht aus vielen faserförmigen Strukturen, den Mikrotubuli. Die Motoren oder Motorproteine bewegen sich entlang dieser Filamente und transportieren zum einen große Makromoleküle durch die Zelle.

Zum anderen können sie, am Ende der Mikrotubuli sitzend, als Signal- oder Regulationsmoleküle wirken. Anhand eines theoretischen Modells, das „Stauphänomene“ berücksichtigt, konnten die Biophysiker nun zeigen, dass ein Stau von Motorproteinen auf einem Mikrotubulus die Abbauaktivität der Motoren gravierend beeinflußt. (Biophysical Journal, 2. November 2011)

Frey und seine Mitarbeiter erforschen Motoren, die während der Zellteilung unter anderem die Länge von Mikrotubuli steuern. Zellen, denen diese Motoren fehlen, können sich nicht einwandfrei teilen. Warum kann ein einziges fehlendes Molekül, das Motormolekül, so gravierende Auswirkungen nach sich ziehen? Diese Frage stellten sich die Biophysiker und studierten die detaillierte Funktionsweise des Moleküls sowie seine möglichen Aufgaben während der Zellteilung. Der Schwerpunkt lag dabei auf dem Zusammenspiel von Mikrotubuli und den Motoren, die Mikrotubuli abbauen (depolymerisieren). Dazu benutzten Frey und seine Mitarbeiter ein theoretisches Modell, das „Stauphänomene“ berücksichtigt.

Anhand dieses Modells konnten die Biophysiker zeigen, dass ein Stau von Motorproteinen auf einem Mikrotubulus die Abbauaktivität der Motoren gravierend beeinflußt. Entscheidend ist dabei, wie viele Motorproteine sich in der umgebenden Lösung (dem Zytosol) befinden. Ab einer bestimmten kritischen Konzentration von Motoren bilden sich Staus an der Spitze des Mikrotubulus. Sobald ein Motor dort seine Abbauarbeit getan hat, diffundiert er mit dem abgelösten Mikrotubulus-Baustein in die Lösung. Durch den Stau an Motorproteinen ist aber sofort Nachschub zur Stelle. So ist dann für die Abbaurate alleine die Geschwindigkeit entscheidend, mit der das einzelne Motorprotein den Mikrotubulus abbaut.

Ganz anders sieht es aus, wenn deutlich weniger Motorproteine in der Lösung vorhanden sind. In diesem Fall wird der Nachschub an Motorproteinen zum begrenzenden Faktor. Die Abbaugeschwindigkeit richtet sich dann nur noch danach, wie schnell und wie viel Nachschub an Motoren zum Mikrotubulus-Ende kommt. Somit entwickelt das Kollektiv der Motorproteine bei niedriger Konzentration eine ganz andere Abbaudynamik als bei höherer Konzentration. „Aufgrund bestehender Experimente wussten wir, dass diese kollektiven Effekte im System wichtig sind. Aber überrascht hat uns, dass die Eigenschaften der einzelnen Moleküle dabei zurücktreten“ berichtet Louis Reese, Erstautor der Studie.

Mit ihren Berechnungen tragen die Münchner Physiker dazu bei, dass bestehende Experimente zum Abbau der Mikrotubuli besser verstanden werden. Ein interessantes Phänomen, das seit einiger Zeit diskutiert wird, ist zudem, dass die Abbaugeschwindigkeit von der Länge der Mikrotubuli abhängt. Grund dafür ist die Ansammlung von Motoren entlang des Filaments: Je länger der Mikrotubulus, desto mehr Motorproteine können daran binden. Das theoretische Modell der Münchner Physiker erklärt die grundlegenden funktionellen Eigenschaften in diesem System. Auf diese Weise setzt es die existierenden experimentellen Ergebnisse in einen größeren Zusammenhang.

„Mit dieser Arbeit spielen wir Theoretiker den Ball zurück an die Experimentatoren.“, meint Erwin Frey. „Solche minimalen funktionellen Einheiten zu identifizieren und zu begreifen ist essentiell für das Verständnis von biologischen Systemen. Dabei spielt die Zelle mit ihren zahlreichen Funktionen und Bausteinen die zentrale Rolle. Sie zu verstehen ist ein erklärtes Ziel von Biologie und Biophysik“.

Die Forschungsarbeit wurde unterstützt aus Mitteln der Deutschen Forschungsgemeinschaft (SFB 863) und des Exzellenzclusters Nanosystems Initiative Munich (NIM).

Publikation:
Crowding of molecular motors determines microtubule depolymerization
Louis Reese, Anna Melbinger, and Erwin Frey
Biophysical Journal, Volume 101, Issue 9, 2190-2200, 2. November 2011
DOI: 10.1016/j.bpj.2011.09.009
Ansprechpartner:
Prof. Dr. Erwin Frey
Ludwig-Maxmilians-Universität (LMU) München
Lehrstuhl für Statistische und Biologische Physik
Arnold-Sommerfeld-Center für Theoretische Physik, Center for NanoScience (CeNS) und Exzellenzcluster Nanosystems Initiative Munich (NIM)
Tel.: 089 / 2180 – 4537
Fax: 089 / 2180 – 4538
E-Mail: frey@lmu.de

Luise Dirscherl | idw
Weitere Informationen:
http://www.lmu.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erforschung von Elementarteilchen in Materialien
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Vermeintlich junger Stern entpuppt sich als galaktischer Greis
16.01.2017 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungsnachrichten

Intelligente Haustechnik hört auf „LISTEN“

17.01.2017 | Architektur Bauwesen

Satellitengestützte Lasermesstechnik gegen den Klimawandel

17.01.2017 | Maschinenbau