Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vollständige Karte der Milchstrasse

06.01.2009
Forscher der Universitäten Zürich, Bochum und Iowa tilgen die letzten weissen Flecken auf der Karte der Milchstrasse.

Ihre neue Karte beschreibt die dreidimensionale Verteilung des Gases in der Milchstrasse. Sie zeigt erstmals, wie sich die Spiralarme aus Sternen, Gasnebel und Staubwolken über die ganze Milchstrasse verteilen.

Die Milchstrasse ist die am genauesten untersuchte Galaxie des Universums. Viele Detailbeobachtungen sind nur in der Milchstrasse möglich, weil andere Galaxien für genaue Untersuchungen zu weit entfernt sind. Daher ist unsere Heimatgalaxie auch immer für die Interpretation von Beobachtungen in anderen Galaxien wichtig. Heute wissen die Astronomen, dass die Sterne in der Milchstrasse wie eine Scheibe verteilt sind, die im Zentrum eine balkenförmige Verdickung aufweist. Ausserhalb dieses zentralen Bereichs ordnen sich die Sterne in der Scheibe vorzugsweise entlang von "Spiralarmen" an. Diese machen die typische, aus Bildern bekannte Spiralstruktur von der Milchstrasse ähnlichen Galaxien aus.

Astronomen teilen diese Galaxien in bestimmte Typen ein, wodurch es möglich wird, ähnliche Galaxien statistisch zu untersuchen. Diesen Typ und die genaue Spiralarmstruktur auch für die Milchstrasse zu bestimmen, erweist sich jedoch als schwierig. Bestimmungen des Verlaufs der Spiralarme waren bisher immer unvollständig, insbesondere im Zentrum und jenseits davon. Mit einer neuen Methode ist es dem Astrophysiker Peter Englmaier vom Institut für Theoretische Physik der Universität Zürich und seinen Kollegen jetzt gelungen, die letzten weissen Flecken auf der Karte unserer Heimatgalaxie zu beseitigen.

Die neue Karte der Spiralarmstruktur basiert auf einem bereits mehrere Jahre alten Modell aus den Doktorarbeiten von Peter Englmaier, Universität Zürich, und Nicolai Bissantz, Universität Bochum, welches wiederum auf den Infrarotdaten der NASA beruht. "Damals wollten wir vor allem die Existenz des Balkens beweisen und damit die beobachtete Gaskinematik im Zentrum erklären", sagt Peter Englmaier. Schon in diesem frühen Modell gab es jedoch Spiralarme, die von dem Balken in der Scheibe angetrieben wurden. Die Spiralarme können wir nicht direkt sehen, sondern nur indirekt auf ihre Lage schliessen, weil die Sonnne sich mit den anderen Sternen innerhalb der Scheibe um das Zentrum bewegt.

Das zwischen den Sternen der Milchstrasse verteilte dünne Gas kann mit Radioteleskopen beobachtet werden und die Doppler-Verschiebung des Lichts erlaubt es, die Geschwindigkeit des Gases zu bestimmen. Das Problem ist: Gaswolken aus verschiedener Entfernung tragen zum Signal bei, und es ist im Detail nicht bekannt, wie weit die einzelnen Gaswolken entfernt sind. Nimmt man Kreisbahnen für die Gaswolken an, kann man das Signal in einzelne Wolken zerlegen und einer kinematischen Entfernung zuordnen. Das Problem mit dieser Methode ist jedoch, dass sich das Gas nicht auf Kreisbahnen bewegt, insbesondere nicht in der Nähe des Balkens.

Den Forschern Martin Pohl (Iowa State University), Peter Englmaier und Nicolai Bissantz ist es nun gelungen, das kinematische Modell mit Balken auch für die kinematische Entfernungsbestimmung zu verwenden. Sie konnten mit diesem Modell die Gasverteilung im Zentrum der Milchstrasse, wo sich das Schwarze Loch befindet, sehr gut beschreiben und diese Verteilung stimmt mit unabhängigen Arbeiten anderer Wissenschaftler überein. Ausgehend von den Balkenenden zeigt die Karte zwei Spiralarme, die sich kurz vor dem Erreichen der Sonnenbahn in vier Arme aufspalten und sich dann bis zum Rand der Scheibe fortsetzen. Erstmals wurden damit die Spiralarme über die ganze Milchstrasse verteilt bestimmt.

Neben den zwei inneren Armen existieren noch zwei schwächer ausgeprägte Arme, die bei ca. 10'000 Lichtjahren Entfernung vom Zentrum enden. Der nähere der zwei Arme ist schon länger bekannt. Er war lange Zeit ein Rätsel, weil seine gemessene Geschwindigkeit grosse Abweichungen von der Kreisbahnbewegung zeigt. Die Forscher konnten dies nun mit ihrem Modell als Störung der Bahnen durch den Balken erklären. Der von der Erde weiter entfernte und symmetrisch gelegene Arm wurde erst kürzlich in den Gasdaten entdeckt. Die Entdeckung dieses zweiten Arms ist eine grosse Erleichterung für Peter Englmaier: "Endlich ist damit klar geworden, dass unser Modell im Prinzip korrekt ist und die innere Galaxie ziemlich symmetrisch aufgebaut ist."

Wie Peter Englmaier erklärt, interessieren sich bereits andere Wissenschaftlergruppen für die neue Karte. Eine Gruppe aus Frankreich hofft, mit ihr der Dunklen Materie auf die Spur zu kommen.

Originalbeiträge:
Englmaier P., Pohl M., Bissantz N. (2008): The Milky Way Spiral Arm Pattern, in: "Tumbling, Twisting, and Winding Galaxies: Pattern Speeds along the Hubble Sequence", E. M. Corsini and V. P. Debattista (eds.), Memorie della Società Astronomica Italiana, im Druck.

Pohl Martin, Englmaier Peter, Bissantz Nicolai. (2008): 3D-Distribution of Molecular Gas in the Barred Milky Way, Astrophysical Journal, Volume 677, Issue 1, 283-291 DOI: 10.1086/529004

Kontakt:

Dr. Peter Englmaier, Institut für Theoretische Physik, Universität Zürich
Tel. 0041-44 63 56192
E-Mail: peter.englmaier@physik.uzh.ch

Beat Müller | idw
Weitere Informationen:
http://www.physik.uzh.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Willkommen an Bord!

28.06.2017 | Veranstaltungsnachrichten

Fraunhofer-Forscher entwickeln Hochdrucksensoren für Extremtemperaturen

28.06.2017 | Energie und Elektrotechnik

Zeolith-Katalysatoren ebnen den Weg für dezentrale chemische Prozesse: Biosprit aus Abfällen

28.06.2017 | Verfahrenstechnologie