Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vollkommene Symmetrie nach atomarer Kollision

07.10.2008
Bei einem atomaren Billardspiel beobachten Forscher wie alle beteiligten Quantenteilchen unter immer gleicher Anordnung erscheinen. Diese neuen Messungen können erstmals theoretische Vorhersagen kritisch überprüfen und ergeben detaillierte Einblicke in die gekoppelte Mehrteilchendynamik auf atomarer Größenskala.

Die Bewegung eines Systems von vier wechselwirkenden Quantenteilchen ist sehr schwer zu berechnen und konkurrierende theoretische Modelle führen zu unterschiedlichen Vorhersagen. Helium stellt ein gutes Studienobjekt dar, denn wenn im Stoß mit einem Projektil-Elektron die beiden gebundenen Elektronen herausgeschlagen werden und den doppelt geladenen Kern zurücklassen, erhält man ein ideales Vierkörpersystem.

Die Bewegungen der Teilchen sind stark gekoppelt, da sie aufgrund ihrer elektrischen Ladungen Kräfte aufeinander ausüben. Die Ergebnisse von theoretischen Rechnungen sind nun unterschiedlich was die Emissionsrichtung der insgesamt drei auslaufenden Elektronen angeht, wenn das einfallende Projektil nur wenig mehr Energie hat wie für solch einen Doppelionisationsprozess nötig ist.

In diesem Schwellenenergiebereich legt es die gegenseitige Abstoßung der negativ geladenen Elektronen nahe, dass sie unter möglichst großen Abständen zueinander und damit symmetrisch mit 120° Relativwinkel erscheinen. Dies wird auch von manchen Theorien bestätigt. Andere Rechnungen ergeben jedoch eine T-Konfiguration wobei zwei Elektronen in entgegen gesetzte Richtung wegfliegen.

Joachim Ullrich, Alexander Dorn und Xueguang Ren vom Max-Planck-Institut für Kernphysik in Heidelberg haben nun die Impulse der drei auslaufenden Elektronen mit einem von ihnen entwickelten, so genannten Reaktionsmikroskop gemessen und fanden, dass diese tatsächlich bevorzugt symmetrisch mit 120° Relativwinkel emittiert werden. Interessanterweise ergibt eine der erfolgreichen Rechnungen, dass diese Emissionskonfiguration nicht nur durch die Elektronenabstoßung geprägt wird, sondern auch von der anfänglichen Anordnung der Elektronen im Atom. So soll bei Lithium dessen Hülle drei Elektronen beherbergt, also eines mehr als Helium, tatsächlich eine T-Konfiguration beobachtet werden können. Die experimentelle Überprüfung dieser Reaktion stellt nun das nächste Ziel der Heidelberger Forscher dar.

Solche fundamentalen und einfachen Systeme stellen für die Modellierung korrelierter Vielteilchendynamik eine Messlatte dar, um hiervon ausgehend den Weg zur Beschreibung komplexerer Systeme und Phänomene zu bereiten, welche gleichzeitig auch von größerer praktischer Relevanz sind. Vor allem im Lichte der rasanten Entwicklungen in der Nanotechnologie und der damit verbundenen Miniaturisierung zu immer kleineren Skalen, wird das detaillierte Verständnis der korrelierten Mehrteilchen-Quantendynamik von wachsender Bedeutung sein.

Originalveröffentlichung:
Xueguang Ren, Alexander Dorn, Joachim Ullrich
Coulomb Four-Body Problem: Electron-Impact Double Ionization of Helium in the Threshold Regime

Physical Review Letters, Vol. 101, No. 9, August 29, 2008, P. 093201

Dr. Bernold Feuerstein | Max-Planck-Gesellschaft
Weitere Informationen:
http://link.aps.org/abstract/PRL/v101/e093201
http://www.mpi-hd.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Freie Elektronen in Sonnen-Protuberanzen untersucht
25.07.2017 | Georg-August-Universität Göttingen

nachricht Magnetische Quantenobjekte im "Nano-Eierkarton": PhysikerInnen bauen künstliche Fallen für Fluxonen
25.07.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Breitbandlichtquellen mit flüssigem Kern

Jenaer Forschern ist es gelungen breitbandiges Laserlicht im mittleren Infrarotbereich mit Hilfe von flüssigkeitsgefüllten optischen Fasern zu erzeugen. Mit den Fasern lieferten sie zudem experimentelle Beweise für eine neue Dynamik von Solitonen – zeitlich und spektral stabile Lichtwellen – die aufgrund der besonderen Eigenschaften des Flüssigkerns entsteht. Die Ergebnisse der Arbeiten publizierte das Jenaer Wissenschaftler-Team vom Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT), dem Fraunhofer-Insitut für Angewandte Optik und Feinmechanik, der Friedrich-Schiller-Universität Jena und des Helmholtz-Insituts im renommierten Fachblatt Nature Communications.

Aus einem ultraschnellen intensiven Laserpuls, den sie in die Faser einkoppeln, erzeugen die Wissenschaftler ein, für das menschliche Auge nicht sichtbares,...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Robuste Computer für's Auto

26.07.2017 | Seminare Workshops

Läuft wie am Schnürchen!

26.07.2017 | Seminare Workshops

Leicht ist manchmal ganz schön schwer!

26.07.2017 | Seminare Workshops