Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die vielfältigen Wege zu Millisekunden-Pulsaren

16.12.2013
Zwei Bonner Astronomen haben ein Szenario vorgeschlagen für die Entwicklung einer neuen Art von Millisekunden-Pulsaren in Doppelsternsystemen mit ähnlichen Umlaufperioden und Exzentrizitäten.

Nach der Hypothese von Paulo Freire und Thomas Tauris werden Materie und Drehmoment von einem Begleitstern durch Akkretion auf einen massereichen Weißen Zwergstern übertragen, der dadurch auf eine Gesamtmasse jenseits der für die Sternentwicklung kritischen Chandrasekhar-Grenzmasse anwächst.


100-m-Radioteleskop des MPIfR bei Effelsberg, gesehen vom Besucherpavillon aus. Der Millisekunden-Pulsar PSR J1946+3417 ist einer von 14 erst kürzlich mit diesem Teleskop entdeckten Pulsaren.

MPIfR/Norbert Junkes


Spätstufen der Entwicklung von engen Doppelsternsystemen nach dem neuen hier beschriebenen Szenario. Alle im Diagramm angegebenen Massen sind in Sonnenmassen skaliert.

Paulo Freire & Thomas Tauris

Wenn sich diese Hypothese bestätigt, ermöglicht das neue Wege bei der Erforschung der Physik von Sternen, speziell bei einem durch Akkretion verursachten Kollaps von sehr massereichen Weißen Zwergsternen.

Neutronensterne können sich extrem schnell um ihre eigene Achse drehen – der Rekordwert liegt bei 716 Umdrehungen pro Sekunde! Solche außergewöhnlichen Objekte lassen sich als Millisekunden-Pulsare beobachten. Seit der ersten Entdeckung eines Millisekunden-Pulsars im Jahr 1982 hat man geglaubt, dass es sich dabei um alte tote Neutronensterne handeln muss, die nur glücklicherweise in einem Doppelsternsystem gelandet sind. Bei der Entwicklung des Begleitsterns zu einem Roten Riesen findet dann Übertragung von Masse und Drehimpuls auf den Neutronenstern statt, wodurch dessen Rotation beschleunigt wird. Ein solches Sternsystem ist auch als Röntgendoppelstern bekannt.

Der Begleitstern entwickelt sich schließlich zu einem Weißen Zwerg, die Massenübertragung hört auf und der Neutronenstern wird zu einem Millisekunden-Pulsar, der durch seine gepulsten Radiosignale beobachtbar wird. Die Umlaufbahnen solcher Doppelsternsysteme haben eine sehr geringe Exzentrizität, das heißt, es handelt sich dabei um nahezu perfekte Kreisbahnen. Die Ursache dafür kann auf die Massenübertragung zurückgeführt werden und ein solches Szenario wird sowohl durch theoretische Berechnungen als auch durch Beobachtungen von Systemen in unterschiedlichen Stadien bei der Entwicklung von Röntgendoppelsternen zu Millisekunden-Pulsaren bestätigt.

Neu gefundene Pulsare wie PSR J1946+3417 lassen vermuten, dass es auch andere Wege geben muss, die zur Entwicklung von Millisekunden-Pulsaren führen. PSR J1946+3417 gehört zu den 14 Pulsaren, die erst kürzlich mit dem 100-m-Radioteleskop Effelsberg entdeckt worden sind. Mit 315 Umdrehungen pro Sekunde ist es eindeutig ein Millisekunden-Pulsar, aber die Exzentrizität der Umlaufbahn ist 4 Größenordnungen höher als bei anderen Systemen mit vergleichbarer Umlaufperiode. Die Masse des Begleitsterns liegt bei 0,24 Sonnenmassen; es handelt sich dabei höchstwahrscheinlich um einen Weißen Zwerg mit Heliumkern. Interessanterweise sind fast zur gleichen Zeit zwei weitere Systeme mit ganz ähnlichen Parametern entdeckt worden, diesmal durch Beobachtungen mit dem Arecibo-305m-Radioteleskop.

Es ist durchaus möglich, dass diese Sternsysteme ihre Entwicklung als Dreifachsterne begonnen haben, die schließlich dynamisch instabil wurden, wie zum Beispiel bei PSR J1903+0327, dem ersten Millisekunden-Pulsar mit einer sehr exzentrischen Umlaufbahn. Ein solcher Prozess sollte allerdings zu einer großen Bandbreite von Umlaufperioden, Bahnexzentrizitäten und Begleitsternmassen führen, ganz im Gegensatz zu den drei neu gefundenen Systemen, die sich in allen Parametern sehr ähneln.

Die neue Hypothese beinhaltet den Kollaps eines massereichen Weißen Zwergs, nachdem die Massenübertragung vom Begleitstern aufgehört hat. Sie erklärt nicht nur die Ähnlichkeiten von Bahnexzentrizität und Masse des Begleitsterns, sondern auch ihre absoluten Werte. "Ich war schon überrascht, als wir uns die von unserem Modell vorhergesagten Bahnperioden und Exzentrizitäten angesehen haben", sagt Thomas Tauris, der in beiden Forschungsgruppen, "Sternphysik" am Argelander-Institut für Astronomie und "Radioastronomische Fundamentalphysik" am Max-Planck-Institut für Radioastronomie, mitarbeitet. "Sie stimmen exakt mit den Beobachtungen überein! Dadurch war mir klar, dass wir auf einer interessanten Spur sind, obwohl es noch eine Stichprobe mit sehr wenigen Daten darstellt."

Die neue Theorie basiert auf umfangreichen Computermodellen, die unter der Leitung von Thomas Tauris gerechnet wurden. Sie ermöglicht Vorhersagen für diese Art von Doppelsternsystemen. Zum Beispiel sollten die Umlaufperioden zwischen 10 und 60 Tagen liegen, jedoch konzentriert auf den mittleren Bereich dazwischen. Und das stimmt exakt mit den beobachteten Werten der drei neuen Systeme überein.

"Unser neuer Ansatz ist sehr elegant", sagt der Erstautor, Paulo Freire vom Max-Planck-Institut für Radioastronomie. "Aber ob die Natur in der Tat Millisekunden-Pulsare auf diese Art erzeugt, wissen wir damit natürlich noch nicht."

In den nächsten Jahren wird das Pulsar-Team in der Forschungsgruppe “Radioastronomische Fundamentalphysik” am Max-Planck-Institut für Radioastronomie in der Lage sein, die Vorhersagen des hier vorgestellten Szenarios zu überprüfen, speziell über optische Nachfolgebeobachtungen und präzise Massenbestimmungen von Pulsaren und Begleitsternen. Sie werden ebenso versuchen, weitere Systeme dieser Art mit dem Radioteleskop Effelsberg aufzuspüren.

"Das Schöne dabei ist, dass wir bei der Bestätigung unserer Theorie einiges über Impuls und Massenverlust in Verbindung mit solchen Supernovae lernen können, die erst durch Massenübertragung ausgelöst werden, oder auch über das Innere von Neutronensternen. Es könnte einen sehr wichtigen Puzzlestein für unser Verständnis von diesen Vorgängen darstellen", schließt Paulo Freire.

Die Veröffentlichung erscheint als Letter in der Fachzeitschrift Monthly Notices of the Royal Astronomical Society.

Kontakt:

Dr. Paulo Freire
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-525-496
E-mail: pfreire@mpifr-bonn.mpg.de
Dr. Thomas Tauris,
Argelander-Institut für Astronomie &
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-73-3660
E-mail: tauris@astro.uni-bonn.de
Dr. Norbert Junkes,
Presse- und Öffentlichkeitsarbeit,
Max-Planck-Institut für Radioastronomie, Bonn, Germany.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Norbert Junkes | Max-Planck-Institut
Weitere Informationen:
http://www.mpifr-bonn.mpg.de/pressemeldungen/2013/13

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie