Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vestas Geschichte in Stein

03.07.2014

Das dunkle Material auf dem Protoplaneten enthält das Mineral Serpentin – und muss deshalb fremden Ursprungs sein

Gesteine erzählen eine Geschichte: Da jedes Mineral nur unter bestimmten Bedingungen entsteht, gewähren sie einen Einblick in die Entwicklung des Körpers, auf dem sie gefunden werden.


Numisia I: Der Krater Numisia direkt südlich des Äquators hat einen Durchmesser von 30 Kilometern. Aufnahmen des Kamerasystems an Bord der NASA-Raumsonde Dawn mit dem klaren Filter zeigen dunkles Material sowohl an den Kraterwänden, als auch im Material, das beim Einschlag herausgeschleudert wurde.

© NASA/JPL-Caltech/UCLA/MPS/DLR/IDA


Numisia II: Mithilfe seiner Farbfilter zerlegt das Kamerasystem das reflektierte Licht in einzelne Wellenlängenbereiche, um auf diese Weise weitere Unterschiede in der Oberflächenzusammensetzung im und um den Krater Numisia sichtbar zu machen. In solchen Daten fanden die Forscher die charakteristischen Fingerabdrücke des Minerals Serpentin.

© NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Wissenschaftler des Max-Planck-Instituts für Sonnensystemforschung haben nun begonnen, dem rätselhaften dunklen Material auf dem Protoplaneten Vesta diese Geschichte zu entlocken.

Mithilfe des Kamerasystems an Bord der NASA-Raumsonde Dawn gelang es erstmals, mit Serpentin einen mineralischen Bestandteil nachzuweisen. Die Entdeckung setzt einen Schlussstrich unter die Diskussion um den Ursprung des dunklen Materials: Primitive Asteroiden müssen es mitgebracht und bei ihren Einschlägen auf dem Protoplaneten verteilt haben.

Das sogenannte dunkle Material, das sich vereinzelt auf der Oberfläche des Protoplaneten Vesta findet, ist eines seiner außergewöhnlichsten Merkmale. Seit der Ankunft der NASA-Raumsonde Dawn im Juli 2011 beschäftigt das Material, das ebenso effizient Licht schluckt wie Ruß, die Wissenschaftsgemeinde. Aus welchen Stoffen besteht es? Wie ist es entstanden? Und was verrät es über diesen einzigartigen Himmelskörper, der sich anschickte ein Planet zu werden, aber vor etwa 4,5 Milliarden Jahren in einer frühen Phase dieser Entwicklung steckenblieb?

In ihrer neuen Studie beantworten die Max-Planck-Forscher einen Teil dieser Fragen. So haben sie in dem dunklen Material, das sie schon vor etwa eineinhalb Jahren als reich an Kohlenstoff charakterisiert hatten, das Silikat Serpentin gefunden. „Neben einzelnen Elementen und einfachen Verbindungen wie OH-Gruppen nun komplexe Mineralien identifizieren zu können, bringt uns einen entscheidenden Schritt weiter“, sagt Andreas Nathues vom Max-Planck-Institut für Sonnensystemforschung.

Wie jedes Mineral entsteht auch Serpentin nur unter bestimmten Bedingungen: Druck und Temperatur dürfen weder zu hoch noch zu niedrig sein. Begleiten weitere Elemente wie etwa Wasserstoff die Geburtsstunde, bilden sich vorzugsweise andere Verbindungen. „Der Nachweis von Mineralien im dunklen Material gewährt uns Zugang zu einer völlig neuen Art von Information“, so Nathues. „Wir müssen uns nicht mehr auf die Frage beschränken, woraus dieses Material besteht. Die Mineralien erzählen uns, welchen Umweltbedingungen es ausgesetzt war.“

Serpentin etwa kann Temperaturen oberhalb von 400 Grad Celsius nicht überstehen: In dem Mineral enthaltene Verbindungen aus einem Sauerstoff- und einem Wasserstoffatom verändern sich dann, und je nach Umgebungsbedingungen entstehen andere Stoffe. „Das dunkle Material ist also nicht sehr heiß geworden“, schlussfolgert Max-Planck-Forscher Martin Hoffmann.

Da Vesta – anders als die deutlich kleineren Asteroiden – in einer frühen Entwicklungsphase heiß und geschmolzen war, kann das dunkle Material somit kein ursprünglicher Bestandteil des Protoplaneten sein. Auch ein vulkanischer Ursprung, den manche Wissenschaftler vermuten, ist somit ausgeschlossen.

„Einzige Möglichkeit bleiben Einschläge von Asteroiden“, sagt Hoffmann und weist darauf hin, dass einige primitive Meteorite typischerweise Serpentin enthalten. Diese gelten als Bruchstücke kohlenstoffreicher Asteroiden. Solche Einschläge müssen zudem vergleichsweise gemächlich abgelaufen sein, denn auch ein Asteroid, der mit hohen Geschwindigkeiten aufprallt, hätte zu hohe Temperaturen erzeugt.

In einer früheren Studie hatten Wissenschaftler aus dem Max-Planck-Institut für Sonnensystemforschung berechnet, wie sich das dunkle Material durch ein solches Ereignis verteilen würde. Die tatsächlichen Fundstellen am Rande eines der beiden großen Einschlagsbecken der Südhalbkugel decken sich mit diesen Berechnungen.

Schlüssel zu den aktuellen Ergebnissen war eine neue und genauere Analyse der Bilder, welche das Kamerasystem an Bord der Raumsonde Dawn in der Zeit von Juli 2011 bis September 2012 aus Umlaufbahnen um Vesta aufgenommen hatte. Die sieben Farbfilter können bestimmte Wellenlängenbereiche aus dem Licht, das Vesta zurück ins All reflektiert, herausfiltern und so die charakteristischen Fingerabdrücke bestimmter Materialien aufspüren.

„Die Gebiete, in denen das dunkle Material an den steilen Rändern großer Krater zutage tritt, sind nicht groß. Manchmal erstreckt es sich in einer Richtung nur über wenige hundert Meter“, erklärt Nathues, Leiter des Kamerateams, die messtechnischen Herausforderungen. Erst durch sorgfältiges Rekalibrieren ist es nun gelungen, den Daten die neuen Informationen zu entlocken. Zudem nutzten die Forscher Messdaten des Spektrometers VIR an Bord der Sonde.

Um das Serpentin zweifelsfrei in ihren Kameradaten zu identifizieren, untersuchten die Wissenschaftler auch serpentinhaltige Mineralmischungen und Meteorite im Labor. Die Fingerabdrücke, welche diese Proben in reflektiertem Licht hinterlassen, stimmen gut mit den realen Messdaten von Vesta überein.

Die Mission Dawn wird vom Jet Propulsion Laboratory (JPL) der US-amerikanischen Weltraumbehörde NASA geleitet. JPL ist eine Abteilung des California Institute of Technology in Pasadena. Die University of California in Los Angeles ist für den wissenschaftlichen Teil der Mission verantwortlich. Das Kamerasystem an Bord der Raumsonde wurde unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Göttingen in Zusammenarbeit mit dem Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Berlin und dem Institut für Datentechnik und Kommunikationsnetze in Braunschweig entwickelt und gebaut. Das Kamera-Projekt wird finanziell von der Max-Planck-Gesellschaft, dem DLR und NASA/JPL unterstützt.

Das Spektrometer VIR wurde zur Vefügung gestellt von der Italienischen Weltraumagentur und wird vom National Institute for Astrophysics in Rom in Zusammenarbeit mit Selex Galileo betrieben. Das Instrument wurde unter Leitung von Selex Galileo gebaut.

Ansprechpartner 

Dr. Birgit Krummheuer

Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 551 384979-462

 

Dr. Andreas Nathues

Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 551 384979-433

 

Dr. Martin Hoffmann

Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 551 384979-308

 

Originalpublikation

 
Andreas Nathues, Martin Hoffman et al.
Detection of Serpentine in Exogenic Carbonaceous Chondrite Material on Vesta from Dawn FC Data
Icarus, in press, DOI: 10.1016/j.icarus.2014.06.003

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8287095/vesta_serpentin

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Bildung von Magma-Ozeanen auf Exoplaneten erforscht
24.10.2017 | Österreichische Akademie der Wissenschaften

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Boost für Lipidforschung: Grazer Forscher erleichtern Lipidanalyse

24.10.2017 | Biowissenschaften Chemie

Bildung von Magma-Ozeanen auf Exoplaneten erforscht

24.10.2017 | Physik Astronomie

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften