Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vestas Geschichte in Stein

03.07.2014

Das dunkle Material auf dem Protoplaneten enthält das Mineral Serpentin – und muss deshalb fremden Ursprungs sein

Gesteine erzählen eine Geschichte: Da jedes Mineral nur unter bestimmten Bedingungen entsteht, gewähren sie einen Einblick in die Entwicklung des Körpers, auf dem sie gefunden werden.


Numisia I: Der Krater Numisia direkt südlich des Äquators hat einen Durchmesser von 30 Kilometern. Aufnahmen des Kamerasystems an Bord der NASA-Raumsonde Dawn mit dem klaren Filter zeigen dunkles Material sowohl an den Kraterwänden, als auch im Material, das beim Einschlag herausgeschleudert wurde.

© NASA/JPL-Caltech/UCLA/MPS/DLR/IDA


Numisia II: Mithilfe seiner Farbfilter zerlegt das Kamerasystem das reflektierte Licht in einzelne Wellenlängenbereiche, um auf diese Weise weitere Unterschiede in der Oberflächenzusammensetzung im und um den Krater Numisia sichtbar zu machen. In solchen Daten fanden die Forscher die charakteristischen Fingerabdrücke des Minerals Serpentin.

© NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Wissenschaftler des Max-Planck-Instituts für Sonnensystemforschung haben nun begonnen, dem rätselhaften dunklen Material auf dem Protoplaneten Vesta diese Geschichte zu entlocken.

Mithilfe des Kamerasystems an Bord der NASA-Raumsonde Dawn gelang es erstmals, mit Serpentin einen mineralischen Bestandteil nachzuweisen. Die Entdeckung setzt einen Schlussstrich unter die Diskussion um den Ursprung des dunklen Materials: Primitive Asteroiden müssen es mitgebracht und bei ihren Einschlägen auf dem Protoplaneten verteilt haben.

Das sogenannte dunkle Material, das sich vereinzelt auf der Oberfläche des Protoplaneten Vesta findet, ist eines seiner außergewöhnlichsten Merkmale. Seit der Ankunft der NASA-Raumsonde Dawn im Juli 2011 beschäftigt das Material, das ebenso effizient Licht schluckt wie Ruß, die Wissenschaftsgemeinde. Aus welchen Stoffen besteht es? Wie ist es entstanden? Und was verrät es über diesen einzigartigen Himmelskörper, der sich anschickte ein Planet zu werden, aber vor etwa 4,5 Milliarden Jahren in einer frühen Phase dieser Entwicklung steckenblieb?

In ihrer neuen Studie beantworten die Max-Planck-Forscher einen Teil dieser Fragen. So haben sie in dem dunklen Material, das sie schon vor etwa eineinhalb Jahren als reich an Kohlenstoff charakterisiert hatten, das Silikat Serpentin gefunden. „Neben einzelnen Elementen und einfachen Verbindungen wie OH-Gruppen nun komplexe Mineralien identifizieren zu können, bringt uns einen entscheidenden Schritt weiter“, sagt Andreas Nathues vom Max-Planck-Institut für Sonnensystemforschung.

Wie jedes Mineral entsteht auch Serpentin nur unter bestimmten Bedingungen: Druck und Temperatur dürfen weder zu hoch noch zu niedrig sein. Begleiten weitere Elemente wie etwa Wasserstoff die Geburtsstunde, bilden sich vorzugsweise andere Verbindungen. „Der Nachweis von Mineralien im dunklen Material gewährt uns Zugang zu einer völlig neuen Art von Information“, so Nathues. „Wir müssen uns nicht mehr auf die Frage beschränken, woraus dieses Material besteht. Die Mineralien erzählen uns, welchen Umweltbedingungen es ausgesetzt war.“

Serpentin etwa kann Temperaturen oberhalb von 400 Grad Celsius nicht überstehen: In dem Mineral enthaltene Verbindungen aus einem Sauerstoff- und einem Wasserstoffatom verändern sich dann, und je nach Umgebungsbedingungen entstehen andere Stoffe. „Das dunkle Material ist also nicht sehr heiß geworden“, schlussfolgert Max-Planck-Forscher Martin Hoffmann.

Da Vesta – anders als die deutlich kleineren Asteroiden – in einer frühen Entwicklungsphase heiß und geschmolzen war, kann das dunkle Material somit kein ursprünglicher Bestandteil des Protoplaneten sein. Auch ein vulkanischer Ursprung, den manche Wissenschaftler vermuten, ist somit ausgeschlossen.

„Einzige Möglichkeit bleiben Einschläge von Asteroiden“, sagt Hoffmann und weist darauf hin, dass einige primitive Meteorite typischerweise Serpentin enthalten. Diese gelten als Bruchstücke kohlenstoffreicher Asteroiden. Solche Einschläge müssen zudem vergleichsweise gemächlich abgelaufen sein, denn auch ein Asteroid, der mit hohen Geschwindigkeiten aufprallt, hätte zu hohe Temperaturen erzeugt.

In einer früheren Studie hatten Wissenschaftler aus dem Max-Planck-Institut für Sonnensystemforschung berechnet, wie sich das dunkle Material durch ein solches Ereignis verteilen würde. Die tatsächlichen Fundstellen am Rande eines der beiden großen Einschlagsbecken der Südhalbkugel decken sich mit diesen Berechnungen.

Schlüssel zu den aktuellen Ergebnissen war eine neue und genauere Analyse der Bilder, welche das Kamerasystem an Bord der Raumsonde Dawn in der Zeit von Juli 2011 bis September 2012 aus Umlaufbahnen um Vesta aufgenommen hatte. Die sieben Farbfilter können bestimmte Wellenlängenbereiche aus dem Licht, das Vesta zurück ins All reflektiert, herausfiltern und so die charakteristischen Fingerabdrücke bestimmter Materialien aufspüren.

„Die Gebiete, in denen das dunkle Material an den steilen Rändern großer Krater zutage tritt, sind nicht groß. Manchmal erstreckt es sich in einer Richtung nur über wenige hundert Meter“, erklärt Nathues, Leiter des Kamerateams, die messtechnischen Herausforderungen. Erst durch sorgfältiges Rekalibrieren ist es nun gelungen, den Daten die neuen Informationen zu entlocken. Zudem nutzten die Forscher Messdaten des Spektrometers VIR an Bord der Sonde.

Um das Serpentin zweifelsfrei in ihren Kameradaten zu identifizieren, untersuchten die Wissenschaftler auch serpentinhaltige Mineralmischungen und Meteorite im Labor. Die Fingerabdrücke, welche diese Proben in reflektiertem Licht hinterlassen, stimmen gut mit den realen Messdaten von Vesta überein.

Die Mission Dawn wird vom Jet Propulsion Laboratory (JPL) der US-amerikanischen Weltraumbehörde NASA geleitet. JPL ist eine Abteilung des California Institute of Technology in Pasadena. Die University of California in Los Angeles ist für den wissenschaftlichen Teil der Mission verantwortlich. Das Kamerasystem an Bord der Raumsonde wurde unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Göttingen in Zusammenarbeit mit dem Institut für Planetenforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) in Berlin und dem Institut für Datentechnik und Kommunikationsnetze in Braunschweig entwickelt und gebaut. Das Kamera-Projekt wird finanziell von der Max-Planck-Gesellschaft, dem DLR und NASA/JPL unterstützt.

Das Spektrometer VIR wurde zur Vefügung gestellt von der Italienischen Weltraumagentur und wird vom National Institute for Astrophysics in Rom in Zusammenarbeit mit Selex Galileo betrieben. Das Instrument wurde unter Leitung von Selex Galileo gebaut.

Ansprechpartner 

Dr. Birgit Krummheuer

Presse- und Öffentlichkeitsarbeit

Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 551 384979-462

 

Dr. Andreas Nathues

Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 551 384979-433

 

Dr. Martin Hoffmann

Max-Planck-Institut für Sonnensystemforschung, Göttingen

Telefon: +49 551 384979-308

 

Originalpublikation

 
Andreas Nathues, Martin Hoffman et al.
Detection of Serpentine in Exogenic Carbonaceous Chondrite Material on Vesta from Dawn FC Data
Icarus, in press, DOI: 10.1016/j.icarus.2014.06.003

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8287095/vesta_serpentin

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics