Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Unzertrennbares getrennt wird: Meilenstein in der Überprüfung der Quantenmechanik

15.10.2009
Forschenden des Swiss Nanoscience Institute an der Universität Basel ist es in Zusammenarbeit mit der Universität Budapest und dem Nanoscience Center in Kopenhagen erstmals gelungen, in einem Festkörper verschränkte Elektronen zu trennen.

Das Experiment könnte ein Meilenstein in der Überprüfung der Quantenmechanik sein. Die Arbeiten des internationalen Forscherteams werden im Wissenschaftsmagazin "Nature" veröffentlicht.

Nach der Quantenmechanik können zwei mikroskopische Objekte, insbesondere Elektronen, verschränkt werden. "Verschränkung" bedeutet hier eine komplexe Art und Weise, miteinander verbunden zu werden, wobei diese Verbindung unter gewissen Umständen bestehen bleibt, auch wenn die beiden Objekte räumlich getrennt werden. Es ist möglich, nach der Trennung das eine Objekt derart zu stören, dass dies beim anderen Objekt messbar ist. Da die beiden keine Information mehr untereinander austauschen, scheinen die Teilchen den Messprozess des jeweils anderen bereits vor dessen Eintreten zu kennen.

Mit dieser gedanklichen Konstruktion "hellsichtiger" Elektronen versuchten Albert Einstein, Boris Podolski und Nathan Rosen 1935 die Quantenmechanik ad absurdum zu führen. Der nach seinen Erfindern benannte EPR-Effekt wurde jedoch unter gewissen Umständen nachgewiesen und hat die Existenz der Quantenverschränkung bestätigt.

Forschende um Prof. Christian Schönenberger von der Universität Basel haben nun auf einer nur wenige tausendstel Millimeter grossen elektronischen Schaltung das Verhalten verschränkter Elektronen beim Übergang aus einem Supraleiter in getrennte Quantenpunkte untersucht. Dabei ist es ihnen erstmals gelungen, innerhalb eines Halbleiters verschränkte Elektronen zu trennen und kurze Zeit getrennt aufzubewahren. Der experimentelle Aufbau ist ein möglicher Kandidat, um den EPR-Effekt erstmals innerhalb eines Festkörpers nachzuweisen.

Mit Hilfe einer Tunnelbarriere extrahieren die Forscher einzelne verschränkte Elektronenpaare aus einem Supraleiter. Die Trennung der beiden Elektronen erfolgt in zwei räumlich getrennten Fallen, so genannten Quantenpunkten, in denen die Elektronen für kurze Zeit festgehalten werden. Die Idee basiert auf einen theoretischen Vorschlag aus der Arbeitsgruppe um Prof. Daniel Loss von der Universität Basel. Von dieser neu entwickelten Technologie versprechen sich die Wissenschaftler Aufschlüsse über Quantenphänomene. Sie könnte einen wichtigen Beitrag zur Realisierung neuartiger Komponenten eines Quantencomputers darstellen. Quantencomputer sind derzeit noch hypothetische Rechner, die aber in der Lage wären, komplexe Rechenoperationen in einem Bruchteil der Zeit eines herkömmlichen Computers zu erledigen.

Originalpublikation
["Cooper pair splitter realised in a two quantum dot Y-junction", Nature]
Kontakt
Prof. Dr. Christian Schönenberger, Universität Basel, Swiss Nanoscience Institute, Tel. 061 267 36 90, E-Mail: Christian.Schoenenberger@unibas.ch

Hans Syfrig | idw
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gravitationswellen als Sensor für Dunkle Materie
06.12.2016 | Max-Planck-Institut für Kernphysik

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was nach der Befruchtung im Zellkern passiert

06.12.2016 | Biowissenschaften Chemie

Tempo-Daten für das „Navi“ im Kopf

06.12.2016 | Medizin Gesundheit

Patienten-Monitoring in der eigenen Wohnung − Sensorenanzug für Schlaganfallpatienten

06.12.2016 | Medizintechnik