Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Unzertrennbares getrennt wird: Meilenstein in der Überprüfung der Quantenmechanik

15.10.2009
Forschenden des Swiss Nanoscience Institute an der Universität Basel ist es in Zusammenarbeit mit der Universität Budapest und dem Nanoscience Center in Kopenhagen erstmals gelungen, in einem Festkörper verschränkte Elektronen zu trennen.

Das Experiment könnte ein Meilenstein in der Überprüfung der Quantenmechanik sein. Die Arbeiten des internationalen Forscherteams werden im Wissenschaftsmagazin "Nature" veröffentlicht.

Nach der Quantenmechanik können zwei mikroskopische Objekte, insbesondere Elektronen, verschränkt werden. "Verschränkung" bedeutet hier eine komplexe Art und Weise, miteinander verbunden zu werden, wobei diese Verbindung unter gewissen Umständen bestehen bleibt, auch wenn die beiden Objekte räumlich getrennt werden. Es ist möglich, nach der Trennung das eine Objekt derart zu stören, dass dies beim anderen Objekt messbar ist. Da die beiden keine Information mehr untereinander austauschen, scheinen die Teilchen den Messprozess des jeweils anderen bereits vor dessen Eintreten zu kennen.

Mit dieser gedanklichen Konstruktion "hellsichtiger" Elektronen versuchten Albert Einstein, Boris Podolski und Nathan Rosen 1935 die Quantenmechanik ad absurdum zu führen. Der nach seinen Erfindern benannte EPR-Effekt wurde jedoch unter gewissen Umständen nachgewiesen und hat die Existenz der Quantenverschränkung bestätigt.

Forschende um Prof. Christian Schönenberger von der Universität Basel haben nun auf einer nur wenige tausendstel Millimeter grossen elektronischen Schaltung das Verhalten verschränkter Elektronen beim Übergang aus einem Supraleiter in getrennte Quantenpunkte untersucht. Dabei ist es ihnen erstmals gelungen, innerhalb eines Halbleiters verschränkte Elektronen zu trennen und kurze Zeit getrennt aufzubewahren. Der experimentelle Aufbau ist ein möglicher Kandidat, um den EPR-Effekt erstmals innerhalb eines Festkörpers nachzuweisen.

Mit Hilfe einer Tunnelbarriere extrahieren die Forscher einzelne verschränkte Elektronenpaare aus einem Supraleiter. Die Trennung der beiden Elektronen erfolgt in zwei räumlich getrennten Fallen, so genannten Quantenpunkten, in denen die Elektronen für kurze Zeit festgehalten werden. Die Idee basiert auf einen theoretischen Vorschlag aus der Arbeitsgruppe um Prof. Daniel Loss von der Universität Basel. Von dieser neu entwickelten Technologie versprechen sich die Wissenschaftler Aufschlüsse über Quantenphänomene. Sie könnte einen wichtigen Beitrag zur Realisierung neuartiger Komponenten eines Quantencomputers darstellen. Quantencomputer sind derzeit noch hypothetische Rechner, die aber in der Lage wären, komplexe Rechenoperationen in einem Bruchteil der Zeit eines herkömmlichen Computers zu erledigen.

Originalpublikation
["Cooper pair splitter realised in a two quantum dot Y-junction", Nature]
Kontakt
Prof. Dr. Christian Schönenberger, Universität Basel, Swiss Nanoscience Institute, Tel. 061 267 36 90, E-Mail: Christian.Schoenenberger@unibas.ch

Hans Syfrig | idw
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenkommunikation in freier Luft nimmt Fahrt auf
24.07.2017 | Österreichische Akademie der Wissenschaften

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Recherche-Reise zum European XFEL und DESY nach Hamburg

24.07.2017 | Veranstaltungen

Internationale Konferenz zu Sprachdialogsystemen und Mensch-Maschine-Kommunikation in Saarbrücken

24.07.2017 | Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Power-to-Liquid: 200 Liter Sprit aus Solarstrom und dem Kohlenstoffdioxid der Umgebungsluft

24.07.2017 | Energie und Elektrotechnik

Innovationsindikator 2017: Deutschland auf Platz vier von 35, bei der Digitalisierung nur Rang 17

24.07.2017 | Studien Analysen

Netzwerke statt Selbstversorgung: Wiesenorchideen überraschen Bayreuther Forscher

24.07.2017 | Biowissenschaften Chemie