Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Unsichtbare Lichtblitze entzünden Nano-Feuerwerk

21.01.2016

Ein Team von Wissenschaftlern aus Rostock und Berlin hat einen neuen Weg gefunden, transparente Nanoteilchen schlagartig lichtundurchlässig zu machen und mit Laserlicht blitzschnell aufzuheizen. Ihre Ergebnisse könnten ungeahnten Möglichkeiten für präzise Materialbearbeitung und Nanomedizin eröffnen.

Intensive Lichtpulse können transparentes Material in ein Plasma verwandeln, das Lichtenergie anschließend effizient einfängt. Wissenschaftler aus Rostock und Berlin konnten diesen Prozess nun extrem präzise kontrollieren.


Nano-Feuerwerk wird entzündet.


Prof. Dr. Thomas Fennel

(Foto: privat)

Sie verwendeten dazu einen Trick, der medizinische Methoden und die Herstellung von Nanomaterialien wesentlich vereinfachen könnte. Das Zusammentreffen von Licht und Materie wurde von einem Team von Physikern vom Institut für Physik der Universität Rostock und vom Max Born Institute für nichtlineare Optik und Kurzzeitspektroskopie (MBI) in Berlin erforscht.

Die Wissenschaftler untersuchten die Wechselwirkung intensiver nah-infraroter (NIR) Laserblitze mit winzigen, nur wenige Nanometer-großen Teilchen aus einigen Tausend Argonatomen – so genannten Atomclustern. Das sichtbare NIR Licht allein kann ein Plasma nur dann erzeugen, wenn seine elektromagnetischen Wellen so stark sind, dass es einzelne Atome in Elektronen und Ionen zerreißt (ionisiert).

Die Forscher konnten diese Zündungsschwelle austricksen, indem sie die Cluster mit einem zweiten, deutlich schwächeren und für das menschliche Auge unsichtbaren Femtosekunden-Lichtblitz im extrem-ultravioletten Spektralbereich bestrahlten (eine Femtosekunde ist ein millionstel einer milliardstel Sekunde).

Mit diesem Trick konnten die Forscher den Energieeinfang auch für unerwartet schwaches sichtbaren Laserlicht “anschalten” und beobachteten ein Nano-Feuerwerk, bei dem Elektronen, Ionen und farbiges Fluoreszenzlicht von den Clustern in verschiedene Richtungen ausgesandt wurden (Bild 2).

Ihre Ergebnisse eröffnen neuartige Möglichkeiten für Grundlagenforschung und Anwendung und wurden in der aktuellen Ausgabe der renommierten Fachzeitschrift Physical Review Letters veröffentlicht.

Die Experimente wurden am Max Born Institut an einer 12 m langen Apparatur für die Erzeugung Hoher-Harmonischer (HH) durchgeführt. “Die Beobachtung, dass Argoncluster selbst bei moderater Lichtintensität stark ionisiert wurden war sehr überraschend ”, erklärt Dr. Bernd Schütte vom MBI, der das Experimente konzipiert und durchgeführt hat. “Obwohl der zusätzliche XUV Lichtblitz sehr schwach ist, ist seine Anwesenheit entscheidend: ohne den XUV Zündungspuls blieben die Nanopartikel unverändert und transparent für das sichtbare Licht (Bild 1)“.

Wissenschaftler um Prof. Thomas Fennel von der Universität Rostock konnten das Geheimnis der Synergie der beiden Lichtblitze durch Computersimulationen lüften. Sie fanden heraus, dass die Bereitstellung einiger weniger „Keim“-Elektronen durch die ionisierende XUV Strahlung genügen, um einen Prozess ähnlich zu einer Schneelawine im Gebirge in Gang zu setzen.

Die Keimelektronen werden dann durch das sichtbare Licht aufgeheizt und schlagen weitere Elektronen aus benachbarten Atomen heraus. “Im Verlauf dieser Lawine wächst die Zahl freier Elektronen in dem Nanopartikel exponentiell.”, erklärt Prof. Fennel. “Letztlich heizen sich die Partikel so stark auf, dass hochgeladene Ionen erzeugt werden können und zerplatzen.”

Das neuartige Konzept der Zündung einer Ionisationslawine durch XUV Licht macht es möglich, die Starkfeldionisation von Nanoteilchen und Feststoffen räumlich und zeitlich extrem genau zu kontrollieren. Die Zündungsidee eröffnet einen Weg, die Ionisation von Nanoteilchen zur Verfolgen und Einzustellen, und zwar auf der Zeitspanne von Attosekunden – einer unvorstellbar kurzen Zeit.

Eine Attosekunde verhält sich zu einer Sekunde, wie eine Sekunde zum Alter des Universums. Die Wissenschaftler erwarten, dass die Zündungsmethode in vielen transparenten Materialien funktioniert, also beispielsweise auch in Glas oder Plastik. Das macht dieses Konzept für die Herstellung von Nanostrukturen interessant.

Der Vorteil ergibt sich aus den Eigenschaften der XUV Lichtblitze, die auf eine viel kleinere Fläche fokussiert werden können und so eine höhere Präzision bei der Plasmazündung erlauben. Gleichzeitig lässt sich die Effizienz erhöhen, da, verglichen mit gängigen Verfahren, sichtbare NIR Pulse mit viel geringerer Intensität ausreichend sind. Daraus könnten zukünftig neue Methoden in der Nanolithografie und Nanomedizin entstehen.

Originalpublikation:
Ionization avalanching in clusters ignited by extreme-ultraviolet driven seed electrons
B. Schütte, M. Arbeiter, A. Mermillod-Blondin, M. J. J. Vrakking, A. Rouzée, T. Fennel.
Physical Review Letters 116, 033001 (2016), 19. Januar 2016, DOI: 10.1103/PhysRevLett.116.033001
(http://dx.doi.org/10.1103/PhysRevLett.116.033001)

Kontakt:
Dr. Bernd Schütte
Bereich A: Attosekundenphysik
Max-Born-Institut
Max-Born-Strasse 2A
12489 Berlin
Email: schuette@mbi-berlin.de

Prof. Dr. Thomas Fennel
Arbeitsgruppe „Theoretische Clusterphysik und Nanophotonik“
Institut für Physik, Universität Rostock
Albert-Einstein-Str. 23
18059 Rostock
Telefon: +49-381-498-6815
E-Mail: thomas.fennel@uni-rostock.de

Ingrid Rieck | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de

Weitere Berichte zu: Attosekunden Elektronen Ionen Ionisation Licht Lichtblitze Lichtenergie MBI NIR Nanopartikel Nanophotonik Nanoteilchen Plasma XUV

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie

Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt

05.12.2016 | Geowissenschaften

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz