Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschnelle Röntgenlaser machen flüchtige Atomspins sichtbar

10.05.2016

Eine neue Röntgentechnik bringt nie zuvor gesehene magnetische Fluktuationen von Billionstelsekunden Dauer ans Licht

Ein kurzer Lichtblitz kann gewöhnlichen Materialien außergewöhnliche Eigenschaften verleihen, wie die perfekte Effizienz der Supraleitung – und das sogar bei Raumtemperatur. Allerdings sind diese Transformationen berüchtigt dafür, sehr flüchtig zu sein – sie verschwinden bereits nach wenigen Billionstelsekunden wieder.


Dieses Bild veranschaulicht die durch Laserpulse angeregte Manipulation von Spin-Korrelationen im Mott-Isolator Sr2IrO4. Die Methode der zeitaufgelösten resonanten inelastischen Röntgenbeugung wurde erstmals an einem Freie-Elektronen-Laser mit Femtosekunden-Zeitauflösung angewandt, um deutliche zeitliche Unterschiede zwischen der Entwicklung von Korrelationen innerhalb zweidimensionaler Ebenen und von dreidimensionalen Spin-Wechselwirkungen aufzuzeigen. Grafik: J.M. Harms/MPI für Struktur und Dynamik der Materie

Nun hat ein internationales Forscherteam, an dem auch Wissenschaftler des Max-Planck-Instituts für Struktur und Dynamik der Materie am CFEL in Hamburg beteiligt sind, synchronisierte Infrarot- und Röntgenlaserpulse benutzt, um magnetische Eigenschaften in dieser vielversprechenden Quantenlandschaft gleichzeitig gezielt zu beeinflussen und nachzuweisen.

Die schnelle, optisch getriebene Schaltung zwischen magnetischen Zuständen, die hier mit beispielloser Präzision untersucht wurde, könnte eines Tages das Lesen und Schreiben von Daten in Computern und anderen digitalen Geräten revolutionieren. Die Studie ist heute in der Fachzeitschrift Nature Materials erschienen.

„Wir haben eine Methode entwickelt, um lichtinduzierte magnetische Dynamik auf der Zeitskala von Femtosekunden mit bisher unerreichter Detailgenauigkeit sichtbar zu machen“, sagt Mark Dean, Physiker am Brookhaven National Laboratory in den USA und Erstautor der Studie. „Das bringt uns dem Ziel näher, das Rezept zu verfeinern, um diese Materialien auf ultraschnellen Zeitskalen zu manipulieren.“

Diese neuartige Röntgentechnik, die man zeitaufgelöste resonante inelastische Streuung nennt, offenbarte die Dynamik sehr schwacher Spinkorrelationen, die sich in Form von Wellen durch das Material ausbreiten und seine magnetischen Eigenschaften bestimmen.

Eine entscheidende Beobachtung ist, dass diese durch einen Infrarotlaserpuls ausgelösten Wellen sich unterschiedlich verhalten, je nachdem ob sie sich in einer zweidimensionalen Ebene oder in einem dreidimensionalen Raum ausbreiten.

„Innerhalb einer zweidimensionalen Atomschicht hielt der neuartige Zustand nur für wenige Pikosekunden an”, sagt Yue Cao, Physiker in Brookhaven und Koautor der Studie. „Aber dreidimensionale Korrelationen breiten sich auch über die Grenze einzelner Atomlagen aus und verschwinden erst nach hunderten Pikosekunden – für die hier betrachteten Zeitskalen ist das ein gewaltiger Unterschied. Es ist unglaublich aufregend, an einer neuen Technik Pionierarbeit zu leisten und dann ihren Erfolg zu sehen.“

Der Großteil der experimentellen Arbeit beruhte auf den leistungsstarken und präzisen Freie-Elektronen-Röntgenlasern des LCLS am SLAC in Stanford, Kalifornien, und der Anlage SACLA in Japan.

Dotieren mit Licht

Um neuartige magnetische und elektronische Eigenschaften zu erzeugen, verwenden Wissenschaftler oft die Technik des sogenannten chemischen Dotierens, welche die atomare Struktur eines Materials durch Einbringen von Fremdatomen verändert. Dadurch kann die Zahl der Elektronen im Material äußerst genau vergrößert oder verringert werden, aber der Prozess führt zu einer dauerhaften Veränderung.

„Wir wollten ähnliche Zustände vorübergehend erzeugen, also benutzten wir die Photodotierung“, sagt Dean. Ein Laserpuls liefert die benötigten Photonen, welche die Elektronen- und Spinkonfiguration der Probe ändern – dieselben Spins, die für Phänomene wie Supraleitung verantwortlich gemacht werden. Augenblicke später wechselt das Material wieder in seinen Ursprungszustand.

In der vorliegenden Arbeit verwendeten die Forscher Strontium-Iridium-Oxid (Sr2IrO4), das für seine starken magnetischen Wechselwirkungen bekannt ist.

Den Spin gezielt zu beeinflussen war vergleichsweise einfach – die wahre Herausforderung lag darin, ihn während der Bewegung abzulichten.

Die Aufnahme eines galoppierenden “Quantenpferdes”

Im Jahr 1872 war die Schrittbewegung eines galoppierenden Pferdes ungeklärt. Verlassen alle vier Hufe den Boden? Und wenn ja, wann genau? Das menschliche Auge ist nicht in der Lage, die Vorgänge während der Bewegung festzuhalten. Also wendete man sich der damaligen Spitzentechnologie der Optik zu: dem Foto.

Eadweard Muybridge ging das Problem an und spielte eine Vorreiterrolle bei der Entwicklung von Techniken zur Erzeugung von kurzen und leistungsstarken Lichtblitzen. Als es Muybridge letztendlich gelang, die Schrittfolge eines Pferdes bildlich festzuhalten, war dies sowohl für die Fotografie als auch für die Bewegungswissenschaften ein Durchbruch. Er machte einen Vorgang sichtbar, der mit anderen Mitteln absolut nicht wahrnehmbar war.

„Muybridge brauchte eine Photonenquelle und ein Nachweisgerät, welche mit unerreichter Schnelligkeit arbeiteten, also durchbrach er die Grenzen der damaligen Technologie“, sagt Cao. „Seine Fragestellung spielte sich etwa bei einer halben Millisekunde ab, während wir aktuell eine Milliarde mal schnellere Vorgänge betrachten. Aber das Grundprinzip, mittels Licht eine offenbarende Momentaufnahme zu erstellen, ist dasselbe.“

Helle, schnelle Blitze

Die leistungsstarken Lichtquellen waren in der aktuellen Arbeit LCLS und SACLA, welche die einzigartige Fähigkeit besitzen eine Quanten-Spinwelle mitten in der Bewegung festzuhalten. Beide Anlagen sind in der Lage, Röntgenpulse von extrem kurzer Dauer und sehr hoher Helligkeit zu erzeugen.

“Unser Wissen, dass diese Anlagen hinreichend kurze und präzise Laserpulse liefern können, hat dieses Projekt erst ins Leben gerufen”, sagt Koautor John Hill.

Im ersten Schritt des Experiments traf ein Infrarot-Laserpuls den in Schichten angeordneten Stoff Sr2IrO4 und zerstörte seinen ursprünglichen magnetischen Zustand. Für einen kurzen Moment formten die Elektronen des Materials Spinwellen, die sich kräuselnd durch das Material ausbreiteten und seine elektronischen und magnetischen Eigenschaften drastisch veränderten. Billionstelsekunden später folgte ein Röntgenstrahl und wurde von diesen gerade entstandenen Wellen zurückgestreut. Durch Messung der Impulsänderungen und der Streuwinkel konnten die Forscher die kurzlebigen elektronischen und magnetischen Eigenschaften messen.

Diesen Prozess, bei dem Röntgenstrahlen von einer Probe abprallen und das Streulicht vermessen wird, nennt man resonante inelastische Röntgenstreuung (RIXS). Mitglieder des Forschungsteams gehörten zu den Wegbereitern dieser Technik in der Untersuchung ähnlicher Festkörperphänomene im Gleichgewicht. Das aktuelle Forschungsprojekt erweitert diese Technik, indem dynamische Prozesse nun zeitaufgelöst aufgenommen werden können.

„Über die bemerkenswerten Fähigkeiten von LCLS und SACLA in der Bereitstellung ultrakurzer Femtosekunden-Röntgenpulse hinaus, war die Herausforderung, der wir uns stellen mussten, wie man die Reaktion der Spins nachweisen könnte,“ sagt Koautor Xuerong Liu vom Institut für Physik der Chinesischen Akademie der Wissenschaften in Peking. „Wir brauchten also ein auf unsere Bedürfnisse zugeschnittenes Röntgennachweissystem – eine ‚Kamera‘.“

Die Wissenschaftler entwickelten ein hochspezialisiertes RIXS-Spektrometer, das millimetergroße Siliziumkristalle zur exakten Energiemessung der zurückgestreuten Röntgenstrahlen einsetzte.

Die Messdaten offenbarten einen klaren Unterschied der Ausbreitung und Zeitskala der magnetischen Phänomene; die Korrelationen zwischen den verschiedenen Materialebenen brauchten mehrere hundert Mal länger um in die Ausgangslage zurückzukehren als jene innerhalb der einzelnen Ebenen.

„Die Resultate stimmen mit theoretischen Erwartungen überein, was ermutigend ist. Aber noch wichtiger ist, dass sie die Stärke und Präzision der Methode aufzeigen,“ sagt Koautor Michael Först vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg. „Wir können nun tiefer in den Mechanismus eintauchen und uns Strategien überlegen, um die Kontrolle der magnetischen Eigenschaften durch Licht noch feiner abzustimmen.“

Als nächsten Schritt planen die Wissenschaftler, die Anregung mit optischen Pulsen bei noch größeren Wellenlängen, d.h. im mittleren Infrarotbereich, zu erforschen. Dies würde die Atome innerhalb des Materials verschieben, ohne direkt die Elektronen und Spins anzuregen. Diese Arbeit könnte dazu beitragen, die natürliche magnetische Kopplung innerhalb des Materials aufzudecken. Im Umkehrschluss würde dies aufzeigen, wie diese Kopplung am besten aufgebrochen wird, um zwischen verschiedenen elektronischen und magnetischen Zuständen hin- und herzuschalten.

Die Studie wurde von Wissenschaftlern des US-amerikanischen Brookhaven National Laboratory und des Max-Planck-Instituts für Struktur und Dynamik der Materie am CFEL in Hamburg geleitet. Zu dem internationalen Team gehörten Forscher aus China, Deutschland, Großbritannien, Japan, Spanien und den USA. Erklärtes Ziel des Center for Free-Electron Laser Science (CFEL) als gemeinsamer Einrichtung des DESY, der Max-Planck-Gesellschaft und der Universität Hamburg ist die Förderung der Forschung mit modernsten Synchrotron-Lichtquellen und Freie-Elektronen-Lasern.


Ansprechpartner:

Dr. Michael Först
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-5360
michael.foerst@mpsd.mpg.de

Originalpublikation:

M. P. M. Dean, Y. Cao, X. Liu, S.Wall, D. Zhu, R. Mankowsky, V. Thampy, X. M. Chen, J. G. Vale, D. Casa, Jungho Kim, A. H. Said, P. Juhas, R. Alonso-Mori, J. M. Glownia, A. Robert, J. Robinson, M. Sikorski, S. Song, M. Kozina, H. Lemke, L. Patthey, S. Owada, T. Katayama, M. Yabashi, Yoshikazu Tanaka, T. Togashi, J. Liu, C. Rayan Serrao, B. J. Kim, L. Huber, C.-L. Chang, D. F. McMorrow, M. Först, and J. P. Hill, "Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4", Nature Materials, Advance Online Publication (9. Mai 2016); DOI: 10.1038/nmat4641

Weitere Informationen:

http://dx.doi.org/10.1038/nmat4641 Originalpublikation
http://qcmd.mpsd.mpg.de/ Forschungsgruppe von Prof. Dr. Andrea Cavalleri
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Berichte zu: CFEL Dynamik Elektronen Materie Max-Planck-Institut Pikosekunden Röntgenlaser Zeitskala

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Lasing am Limit
15.02.2018 | Technische Universität Berlin

nachricht Forschung für die LED-Tapete der Zukunft
15.02.2018 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Das VLT der ESO arbeitet erstmals wie ein 16-Meter-Teleskop

Erstes Licht für das ESPRESSO-Instrument mit allen vier Hauptteleskopen

Das ESPRESSO-Instrument am Very Large Telescope der ESO in Chile hat zum ersten Mal das kombinierte Licht aller vier 8,2-Meter-Hauptteleskope nutzbar gemacht....

Im Focus: Neuer Quantenspeicher behält Information über Stunden

Information in einem Quantensystem abzuspeichern ist schwer, sie geht meist rasch verloren. An der TU Wien erzielte man nun ultralange Speicherzeiten mit winzigen Diamanten.

Mit Quantenteilchen kann man Information speichern und manipulieren – das ist die Basis für viele vielversprechende Technologien, vom hochsensiblen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auf der grünen Welle in die Zukunft des Mobilfunks

16.02.2018 | Veranstaltungen

Smart City: Interdisziplinäre Konferenz zu Solarenergie und Architektur

15.02.2018 | Veranstaltungen

Forschung für fruchtbare Böden / BonaRes-Konferenz 2018 versammelt internationale Bodenforscher

15.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste integrierte Schaltkreise (IC) aus Plastik

17.02.2018 | Energie und Elektrotechnik

Stammbaum der Tagfalter erstmalig umfassend neu aufgestellt

16.02.2018 | Biowissenschaften Chemie

Neue Strategien zur Behandlung chronischer Nierenleiden kommen aus der Tierwelt

16.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics