Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschnelle Röntgenlaser machen flüchtige Atomspins sichtbar

10.05.2016

Eine neue Röntgentechnik bringt nie zuvor gesehene magnetische Fluktuationen von Billionstelsekunden Dauer ans Licht

Ein kurzer Lichtblitz kann gewöhnlichen Materialien außergewöhnliche Eigenschaften verleihen, wie die perfekte Effizienz der Supraleitung – und das sogar bei Raumtemperatur. Allerdings sind diese Transformationen berüchtigt dafür, sehr flüchtig zu sein – sie verschwinden bereits nach wenigen Billionstelsekunden wieder.


Dieses Bild veranschaulicht die durch Laserpulse angeregte Manipulation von Spin-Korrelationen im Mott-Isolator Sr2IrO4. Die Methode der zeitaufgelösten resonanten inelastischen Röntgenbeugung wurde erstmals an einem Freie-Elektronen-Laser mit Femtosekunden-Zeitauflösung angewandt, um deutliche zeitliche Unterschiede zwischen der Entwicklung von Korrelationen innerhalb zweidimensionaler Ebenen und von dreidimensionalen Spin-Wechselwirkungen aufzuzeigen. Grafik: J.M. Harms/MPI für Struktur und Dynamik der Materie

Nun hat ein internationales Forscherteam, an dem auch Wissenschaftler des Max-Planck-Instituts für Struktur und Dynamik der Materie am CFEL in Hamburg beteiligt sind, synchronisierte Infrarot- und Röntgenlaserpulse benutzt, um magnetische Eigenschaften in dieser vielversprechenden Quantenlandschaft gleichzeitig gezielt zu beeinflussen und nachzuweisen.

Die schnelle, optisch getriebene Schaltung zwischen magnetischen Zuständen, die hier mit beispielloser Präzision untersucht wurde, könnte eines Tages das Lesen und Schreiben von Daten in Computern und anderen digitalen Geräten revolutionieren. Die Studie ist heute in der Fachzeitschrift Nature Materials erschienen.

„Wir haben eine Methode entwickelt, um lichtinduzierte magnetische Dynamik auf der Zeitskala von Femtosekunden mit bisher unerreichter Detailgenauigkeit sichtbar zu machen“, sagt Mark Dean, Physiker am Brookhaven National Laboratory in den USA und Erstautor der Studie. „Das bringt uns dem Ziel näher, das Rezept zu verfeinern, um diese Materialien auf ultraschnellen Zeitskalen zu manipulieren.“

Diese neuartige Röntgentechnik, die man zeitaufgelöste resonante inelastische Streuung nennt, offenbarte die Dynamik sehr schwacher Spinkorrelationen, die sich in Form von Wellen durch das Material ausbreiten und seine magnetischen Eigenschaften bestimmen.

Eine entscheidende Beobachtung ist, dass diese durch einen Infrarotlaserpuls ausgelösten Wellen sich unterschiedlich verhalten, je nachdem ob sie sich in einer zweidimensionalen Ebene oder in einem dreidimensionalen Raum ausbreiten.

„Innerhalb einer zweidimensionalen Atomschicht hielt der neuartige Zustand nur für wenige Pikosekunden an”, sagt Yue Cao, Physiker in Brookhaven und Koautor der Studie. „Aber dreidimensionale Korrelationen breiten sich auch über die Grenze einzelner Atomlagen aus und verschwinden erst nach hunderten Pikosekunden – für die hier betrachteten Zeitskalen ist das ein gewaltiger Unterschied. Es ist unglaublich aufregend, an einer neuen Technik Pionierarbeit zu leisten und dann ihren Erfolg zu sehen.“

Der Großteil der experimentellen Arbeit beruhte auf den leistungsstarken und präzisen Freie-Elektronen-Röntgenlasern des LCLS am SLAC in Stanford, Kalifornien, und der Anlage SACLA in Japan.

Dotieren mit Licht

Um neuartige magnetische und elektronische Eigenschaften zu erzeugen, verwenden Wissenschaftler oft die Technik des sogenannten chemischen Dotierens, welche die atomare Struktur eines Materials durch Einbringen von Fremdatomen verändert. Dadurch kann die Zahl der Elektronen im Material äußerst genau vergrößert oder verringert werden, aber der Prozess führt zu einer dauerhaften Veränderung.

„Wir wollten ähnliche Zustände vorübergehend erzeugen, also benutzten wir die Photodotierung“, sagt Dean. Ein Laserpuls liefert die benötigten Photonen, welche die Elektronen- und Spinkonfiguration der Probe ändern – dieselben Spins, die für Phänomene wie Supraleitung verantwortlich gemacht werden. Augenblicke später wechselt das Material wieder in seinen Ursprungszustand.

In der vorliegenden Arbeit verwendeten die Forscher Strontium-Iridium-Oxid (Sr2IrO4), das für seine starken magnetischen Wechselwirkungen bekannt ist.

Den Spin gezielt zu beeinflussen war vergleichsweise einfach – die wahre Herausforderung lag darin, ihn während der Bewegung abzulichten.

Die Aufnahme eines galoppierenden “Quantenpferdes”

Im Jahr 1872 war die Schrittbewegung eines galoppierenden Pferdes ungeklärt. Verlassen alle vier Hufe den Boden? Und wenn ja, wann genau? Das menschliche Auge ist nicht in der Lage, die Vorgänge während der Bewegung festzuhalten. Also wendete man sich der damaligen Spitzentechnologie der Optik zu: dem Foto.

Eadweard Muybridge ging das Problem an und spielte eine Vorreiterrolle bei der Entwicklung von Techniken zur Erzeugung von kurzen und leistungsstarken Lichtblitzen. Als es Muybridge letztendlich gelang, die Schrittfolge eines Pferdes bildlich festzuhalten, war dies sowohl für die Fotografie als auch für die Bewegungswissenschaften ein Durchbruch. Er machte einen Vorgang sichtbar, der mit anderen Mitteln absolut nicht wahrnehmbar war.

„Muybridge brauchte eine Photonenquelle und ein Nachweisgerät, welche mit unerreichter Schnelligkeit arbeiteten, also durchbrach er die Grenzen der damaligen Technologie“, sagt Cao. „Seine Fragestellung spielte sich etwa bei einer halben Millisekunde ab, während wir aktuell eine Milliarde mal schnellere Vorgänge betrachten. Aber das Grundprinzip, mittels Licht eine offenbarende Momentaufnahme zu erstellen, ist dasselbe.“

Helle, schnelle Blitze

Die leistungsstarken Lichtquellen waren in der aktuellen Arbeit LCLS und SACLA, welche die einzigartige Fähigkeit besitzen eine Quanten-Spinwelle mitten in der Bewegung festzuhalten. Beide Anlagen sind in der Lage, Röntgenpulse von extrem kurzer Dauer und sehr hoher Helligkeit zu erzeugen.

“Unser Wissen, dass diese Anlagen hinreichend kurze und präzise Laserpulse liefern können, hat dieses Projekt erst ins Leben gerufen”, sagt Koautor John Hill.

Im ersten Schritt des Experiments traf ein Infrarot-Laserpuls den in Schichten angeordneten Stoff Sr2IrO4 und zerstörte seinen ursprünglichen magnetischen Zustand. Für einen kurzen Moment formten die Elektronen des Materials Spinwellen, die sich kräuselnd durch das Material ausbreiteten und seine elektronischen und magnetischen Eigenschaften drastisch veränderten. Billionstelsekunden später folgte ein Röntgenstrahl und wurde von diesen gerade entstandenen Wellen zurückgestreut. Durch Messung der Impulsänderungen und der Streuwinkel konnten die Forscher die kurzlebigen elektronischen und magnetischen Eigenschaften messen.

Diesen Prozess, bei dem Röntgenstrahlen von einer Probe abprallen und das Streulicht vermessen wird, nennt man resonante inelastische Röntgenstreuung (RIXS). Mitglieder des Forschungsteams gehörten zu den Wegbereitern dieser Technik in der Untersuchung ähnlicher Festkörperphänomene im Gleichgewicht. Das aktuelle Forschungsprojekt erweitert diese Technik, indem dynamische Prozesse nun zeitaufgelöst aufgenommen werden können.

„Über die bemerkenswerten Fähigkeiten von LCLS und SACLA in der Bereitstellung ultrakurzer Femtosekunden-Röntgenpulse hinaus, war die Herausforderung, der wir uns stellen mussten, wie man die Reaktion der Spins nachweisen könnte,“ sagt Koautor Xuerong Liu vom Institut für Physik der Chinesischen Akademie der Wissenschaften in Peking. „Wir brauchten also ein auf unsere Bedürfnisse zugeschnittenes Röntgennachweissystem – eine ‚Kamera‘.“

Die Wissenschaftler entwickelten ein hochspezialisiertes RIXS-Spektrometer, das millimetergroße Siliziumkristalle zur exakten Energiemessung der zurückgestreuten Röntgenstrahlen einsetzte.

Die Messdaten offenbarten einen klaren Unterschied der Ausbreitung und Zeitskala der magnetischen Phänomene; die Korrelationen zwischen den verschiedenen Materialebenen brauchten mehrere hundert Mal länger um in die Ausgangslage zurückzukehren als jene innerhalb der einzelnen Ebenen.

„Die Resultate stimmen mit theoretischen Erwartungen überein, was ermutigend ist. Aber noch wichtiger ist, dass sie die Stärke und Präzision der Methode aufzeigen,“ sagt Koautor Michael Först vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg. „Wir können nun tiefer in den Mechanismus eintauchen und uns Strategien überlegen, um die Kontrolle der magnetischen Eigenschaften durch Licht noch feiner abzustimmen.“

Als nächsten Schritt planen die Wissenschaftler, die Anregung mit optischen Pulsen bei noch größeren Wellenlängen, d.h. im mittleren Infrarotbereich, zu erforschen. Dies würde die Atome innerhalb des Materials verschieben, ohne direkt die Elektronen und Spins anzuregen. Diese Arbeit könnte dazu beitragen, die natürliche magnetische Kopplung innerhalb des Materials aufzudecken. Im Umkehrschluss würde dies aufzeigen, wie diese Kopplung am besten aufgebrochen wird, um zwischen verschiedenen elektronischen und magnetischen Zuständen hin- und herzuschalten.

Die Studie wurde von Wissenschaftlern des US-amerikanischen Brookhaven National Laboratory und des Max-Planck-Instituts für Struktur und Dynamik der Materie am CFEL in Hamburg geleitet. Zu dem internationalen Team gehörten Forscher aus China, Deutschland, Großbritannien, Japan, Spanien und den USA. Erklärtes Ziel des Center for Free-Electron Laser Science (CFEL) als gemeinsamer Einrichtung des DESY, der Max-Planck-Gesellschaft und der Universität Hamburg ist die Förderung der Forschung mit modernsten Synchrotron-Lichtquellen und Freie-Elektronen-Lasern.


Ansprechpartner:

Dr. Michael Först
Max-Planck-Institut für Struktur und Dynamik der Materie
Center for Free-Electron Laser Science
Luruper Chaussee 149
22761 Hamburg
Germany
+49 (0)40 8998-5360
michael.foerst@mpsd.mpg.de

Originalpublikation:

M. P. M. Dean, Y. Cao, X. Liu, S.Wall, D. Zhu, R. Mankowsky, V. Thampy, X. M. Chen, J. G. Vale, D. Casa, Jungho Kim, A. H. Said, P. Juhas, R. Alonso-Mori, J. M. Glownia, A. Robert, J. Robinson, M. Sikorski, S. Song, M. Kozina, H. Lemke, L. Patthey, S. Owada, T. Katayama, M. Yabashi, Yoshikazu Tanaka, T. Togashi, J. Liu, C. Rayan Serrao, B. J. Kim, L. Huber, C.-L. Chang, D. F. McMorrow, M. Först, and J. P. Hill, "Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4", Nature Materials, Advance Online Publication (9. Mai 2016); DOI: 10.1038/nmat4641

Weitere Informationen:

http://dx.doi.org/10.1038/nmat4641 Originalpublikation
http://qcmd.mpsd.mpg.de/ Forschungsgruppe von Prof. Dr. Andrea Cavalleri
http://www.mpsd.mpg.de Max-Planck-Institut für Struktur und Dynamik der Materie

Dr. Michael Grefe | Max-Planck-Institut für Struktur und Dynamik der Materie

Weitere Berichte zu: CFEL Dynamik Elektronen Materie Max-Planck-Institut Pikosekunden Röntgenlaser Zeitskala

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

Sensibilisierungskampagne zu Pilzinfektionen

15.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Scharfe Röntgenblitze aus dem Atomkern

17.08.2017 | Physik Astronomie

Fake News finden und bekämpfen

17.08.2017 | Interdisziplinäre Forschung

Effizienz steigern, Kosten senken!

17.08.2017 | Messenachrichten