Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschnelle Kontrolle über Elektronenpulse

03.06.2014

Physiker der Universität Göttingen steuern den Stromfluss in Nanostrukturen mit Terahertz-Feldern

Die rasant steigende Leistungsfähigkeit moderner Elektronik, beispielsweise in Smartphones, basiert auf immer kleineren und schnelleren Computerchips.


Künstlerische Darstellung des kurzen Terahertz-Pulses.

Grafik: Universität Göttingen


Die Pulsform zeigt die gemessene Oszillation des elektrischen Feldes an der Nanospitze. Die Dauer dieses Pulses beträgt etwa eine Pikosekunde, welches dem Billionstel einer Sekunde entspricht.

Grafik: Universität Göttingen

Forscher der Universität Göttingen haben an metallischen Nanospitzen nun erstmals eine aktive Kontrolle des Stroms bei Terahertz-Frequenzen – 1000 Milliarden Schaltzyklen pro Sekunde – gezeigt. Derzeit wird der Takt von Computer-Prozessoren in Gigahertz angegeben, was einer Milliarde Schaltzyklen pro Sekunde entspricht.

Um zukünftig in den Terahertz-Bereich vorzustoßen, bedarf es gänzlich neuer Technologien, die zwangsläufig von der Elektronik zur Optik führen. Neuartige Konzepte aus der sogenannten Lichtwellenelektronik, mit denen die Göttinger Forscher arbeiten, nutzen kontrollierte Lichtfelder und extrem kurze Laserpulse, um Elektronenströme auf der Nanometerskala zu steuern. Die Ergebnisse sind in der Fachzeitschrift Nature Physics erschienen.

In ihren Experimenten hat die Arbeitsgruppe um Prof. Dr. Claus Ropers von der Fakultät für Physik Lichtpulse und elektrische Terahertz-Pulse zeitgleich überlagert und dabei deren Kopplung beobachtet.

„In den Messdaten können wir ganz direkt die elektrische Antwort der Nanostruktur auf das ultrakurze Eingangssignal ablesen. Dabei beobachten wir, dass die Stromstärke und die Geschwindigkeit der Elektronen ohne Verzögerung den ultraschnellen Terahertz-Schwingungen an der Nanospitze folgen“, erklärt Doktorandin Lara Wimmer.

Bis zum Einzug von Terahertz-Frequenzen in Computerchips sind noch eine Reihe physikalischer Hürden zu überwinden, doch schon jetzt zeigen sich direkte Anwendungsmöglichkeiten der aktuellen Ergebnisse in der ultraschnellen Spektroskopie und Bildgebung, einem Schwerpunkt der Arbeitsgruppe.

Doktorand Georg Herink erläutert: „Die einzigartige Elektronendynamik im Terahertzfeld erlaubt eine Feinabstimmung der Geschwindigkeitsverteilung in einem Elektronenpuls. Das Ziel dieser Optimierung sind die kürzesten Pulse für die zeitaufgelöste Elektronenmikroskopie, die wir mit unseren Kollegen hier in Göttingen entwickeln.“

Originalveröffentlichung: Lara Wimmer et al.: Terahertz control of nanotip photoemission, Nature Physics 10, 432–436 (2014), doi: http://dx.doi.org/10.1038/nphys2974

Kontaktadresse:
Prof. Dr. Claus Ropers
Georg-August-Universität Göttingen
Fakultät für Physik – IV. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-4549, E-Mail: cropers@gwdg.de
Internet: http://www.uni-goettingen.de/de/91116.html

Weitere Informationen:

http://dx.doi.org/10.1038/nphys2974

Thomas Richter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit