Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultraschnell schaltbare Metamaterialien

19.05.2017

Physiker der Uni Jena entwickeln mit Partnern aus Russland und den USA Metamaterialien, die sich als ultraschnelle optische Schalter eignen

Optische Metamaterialien muten für den Physik-Laien an wie aus einer anderen Welt – lassen sich mit solchen Materialien doch potenziell Dinge unsichtbar machen oder Licht in die falsche Richtung brechen.


Schematische Darstellung des schaltbaren Metamaterials. Die Nanozylinder aus Galliumarsenid sind rund 300 Nanometer hoch. Werden sie mit Laserpulsen beleuchtet, absorbieren sie die Lichtteilchen.

Abbildung: Maxim Shcherbakov


Physikerin Dr. Isabelle Staude vom Institut für Angewandte Physik der Universität Jena.

Foto: Jan-Peter Kasper/FSU

Möglich wird das durch ihre besondere Struktur: Metamaterialien bestehen aus winzigen maßgeschneiderten Nanopartikeln, die mit elektromagnetischer Strahlung – etwa Licht – auf völlig andere Weise wechselwirken als natürlich vorkommende Materialien.

Die Nanostrukturierung zur Herstellung von Metamaterialien erfolgt zumeist mittels lithografischer Verfahren. Ist sie erst einmal abgeschlossen, so bestimmt sie dauerhaft die Eigenschaften des Metamaterials. Einem Team von Physikern der Staatlichen Universität Moskau (Russland), der Sandia National Laboratories in Albuquerque (USA) und der Friedrich-Schiller-Universität Jena ist es nun jedoch gelungen, ein Metamaterial mit schaltbaren Eigenschaften zu entwickeln:

Im Fachmagazin Nature Communications stellen die Forscher ultraschnell schaltbare Metamaterialien vor, deren nanoskopische Bausteine bis zu 100 Milliarden Mal in der Sekunde an- bzw. ausgeschaltet werden können (DOI: 10.1038/s41467-017-00019-3).

Die schaltbaren Metamaterialien werden mittels Elektronenstrahllithographie hergestellt. „Sie bestehen aus einer dünnen Schicht des Halbleiterwerkstoffs Galliumarsenid, auf die Nanopartikel aufgebracht sind, die Lichtteilchen einfangen können“, erklärt Dr. Isabelle Staude von der Friedrich-Schiller-Universität Jena.

Mit anderen Worten: Wenn Licht auf das Material trifft, wird es in den Nanopartikeln eingeschlossen – „verschluckt“ – und kann so intensiv mit dem Material wechselwirken. Die Nanopartikel bestehen ebenfalls aus Galliumarsenid, das von einem glasartigen Material umschlossen ist und haben eine Größe von 300 Nanometern.

Das Prinzip des schaltbaren Metamaterials beruht auf der Erzeugung von Elektronen und entsprechenden Elektronenfehlstellen im Halbleitermaterial durch die Einstrahlung von Licht. Dabei handelt es sich um einen gängigen optoelektronischen Effekt, welcher z. B. auch in Solarzellen und Detektoren Verwendung findet. Durch die Lichtkonzentration in den Nanopartikeln wird dieser Effekt verstärkt. „Wenn wir das Metamaterial mit einem ultrakurzen Laserpuls beleuchten, so absorbieren die Nanopartikel die Lichtteilchen und regen darin die Elektronen und Elektronenfehlstellen an“, erläutert Physikerin Staude.

Die Gegenwart der Ladungsträger führt wiederum dazu, dass sich die optischen Materialeigenschaften des Galliumarsenids im Innern der Nanopartikel verändern. Dies wirkt sich dann direkt auf die optischen Eigenschaften des Metamaterials selbst aus: Während es in seinem Ausgangszustand eine spiegelnde Oberfläche besitzt, die das Licht reflektiert, verliert das Material seine reflektierende Eigenschaften durch die Absorption von Licht.

In Sekundenbruchteilen treffen anschließend Elektronen und Fehlstellen einander und „löschen“ sich gegenseitig aus, was dazu führt, dass das Material seine spiegelnde Oberfläche wiedererlangt. „Diese Funktionsweise lässt sich in Zukunft vielleicht für die Konstruktion photonischer Bauelemente nutzen, beispielsweise in der optischen Signalübertragung oder für neue Mikroskopieverfahren“, sagt Dr. Staude. Bislang existiere das schaltbare Metamaterial lediglich im Labor. Bevor es auch in größerem Maßstab produziert werden wird, so erwartet die Jenaer Physikerin, sei jedoch noch weitere Grundlagenforschung nötig.

Original-Publikation:
Shcherbakov MR et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces, Nature Communications 8, Article number: 17 (2017), DOI:10.1038/s41467-017-00019-3
https://www.nature.com/articles/s41467-017-00019-3

Kontakt (in Jena):
Dr. Isabelle Staude
Institut für Angewandte Physik der Friedrich-Schiller-Universität Jena
Abbe Center of Photonics
Albert-Einstein-Str. 6, 07745 Jena
Tel.: 03641 / 947566
E-Mail: isabelle.staude[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon

Die Entwicklung von Leichtbaustrukturen ist eines der zentralen Zukunftsthemen unserer Gesellschaft. Besonders in der Luftfahrtindustrie und in anderen Transportbereichen sind Leichtbaustrukturen gefragt. Sie ermöglichen Energieeinsparungen und reduzieren den Ressourcenverbrauch bei Treibstoffen und Material. Zum Einsatz kommen dabei Verbundmaterialien in der so genannten Sandwich-Bauweise. Diese bestehen aus zwei dünnen, steifen und hochfesten Deckschichten mit einer dazwischen liegenden dicken, vergleichsweise leichten und weichen Mittelschicht, dem Sandwich-Kern.

Aramidpapier ist ein etabliertes Material für solche Sandwichkerne. Sein mechanisches Strukturversagen ist jedoch noch unzureichend erforscht: Bislang fehlten...

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

Tag der Seltenen Erkrankungen – Deutsche Leberstiftung informiert über seltene Lebererkrankungen

21.02.2018 | Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kameratechnologie in Fahrzeugen: Bilddaten latenzarm komprimiert

21.02.2018 | Messenachrichten

Mit grüner Chemie gegen Malaria

21.02.2018 | Biowissenschaften Chemie

Periimplantitis: BMBF fördert zahnärztliches Verbund-Projekt mit 1,1 Millionen Euro

21.02.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics