Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ultrakurze Strahlungsblitze für die Biomedizin

07.07.2010
Auf dem Forschungscampus Garching wird in den kommenden Jahren das Centre for Advanced Laser Applications (CALA) errichtet. Hauptanliegen der universitären Forschung ist die Entwicklung von Verfahren zur grundlegenden Verbesserung der Heilungschancen von Krebspatienten. Dazu werden neuartige Röntgenstrahl-basierte, diagnostische und Teilchenstrahl-basierte, therapeutische Methoden in einer kompakten Quelle zusammengeführt. Die Quelle wird durch ultrakurze Laserpulse angetrieben. Die Max-Planck-Gesellschaft unterstützt das Projekt mit komplexer Lasertechnologie.

In den kommenden Jahren erhalten die Ludwig-Maximilians-Universität (LMU) und die Technische Universität München (TUM) auf dem Forschungscampus Garching b. München ein neues Centre for Advanced Laser Applications, kurz CALA. Dem Projekt hat nun der Wissenschaftsrat grünes Licht gegeben. Unterstützt wird CALA von der Max-Planck-Gesellschaft, die eines ihrer Lasersysteme zur Verfügung stellt.

Aufbauend auf den Ergebnissen, die im Exzellenzcluster "Munich-Centre for Advanced Photonics" (MAP) erzielt wurden, wird CALA die Schwerpunktsetzung der beiden Münchner Universitäten bezüglich innovativer Höchstleistungs-Lasertechnologie und deren Anwendung in der Biomedizin durch die Entwicklung laserbasierter brillanter Quellen von Röntgen- und Teilchenstrahlen intensivieren. Im Vordergrund stehen dabei die Erforschung neuartiger Verfahren zur biomedizinischen Bildgebung mit Röntgenstrahlen zur Krebs-Früherkennung und, darauf abgestimmt, die lokale Tumortherapie mit lasererzeugten Protonen- und Kohlenstoffionenstrahlen. Darüber hinaus ist die ultraschnelle Strahlenbiologie ein weiterer Forschungsschwerpunkt. Ziel ist ein besseres Verständnis der primären Prozesse bei der Therapie mit Ionenstrahlen und deren Optimierung.

Licht ist das Werkzeug des 21. Jahrhunderts. Schon heute gilt die Photonik als Schlüsseltechnologie mit zahlreichen vielversprechenden Perspektiven in technischen und medizinischen Bereichen. Das neue Centre for Advanced Laser Applications wird dazu beitragen, das enorme Potential des Lichts weiter auszuschöpfen.

CALA wird in zwei Abschnitten gebaut. Im ersten wird ein von der LMU finanzierter Forschungsbau mit 500 m² Nutzfläche am nördlichen Ende des Forschungscampus Garching bis 2011 errichtet. Der zweite Bauabschnitt beinhaltet eine Erweiterung auf dann insgesamt 2600 m². Diese Baumaßnahme soll Ende 2013 abgeschlossen sein. Die Kosten für die Erweiterung des Forschungsbaus und dessen Geräteausstattung belaufen sich auf 63 Mio Euro. Sie werden vom Bund und dem Land Bayern gemeinsam zu gleichen Teilen getragen.

Initiiert wurde das CALA-Projekt von Prof. Ferenc Krausz, Lehrstuhlinhaber für experimentelle Physik (Laserphysik) an der LMU und Direktor am Max-Planck Institut für Quantenoptik. Gemeinsam haben er und Prof. Franz Pfeiffer, Lehrstuhlinhaber für Angewandte Biophysik am Department für Physik der TUM, Prof. Michael Molls, Leiter der Klinik und Poliklinik für Strahlentherapie und Radiologische Onkologie am Klinikum rechts der Isar der TUM, und Prof. Maximilian Reiser, Direktor des Instituts für Klinische Radiologie am Klinikum der LMU, mit Unterstützung von zahlreichen Kollegen beider Münchner Universitäten, das Konzept für CALA erarbeitet. Prof. em. Klaus Witte wurde die Projektleitung übertragen.

Tumor-Erkennung mit lasergetriebenen Röntgenstrahlen

Die klassische Röntgenbildgebung stößt bei der Untersuchung von Weichteilgewebe, beispielsweise bei der Früherkennung der häufigsten Krebserkrankungen wie Brust-, Prostata- und Lungenkrebs physikalisch bedingt an ihre Grenzen. Neuartige Bildgebungsverfahren, die statt der Absorption des Röntgenlichts dessen Wellencharakter ausnutzen, liefern deutlich bessere Ergebnisse, insbesondere das Phasenkontrastverfahren, das ein beachtliches Potential für Dosisreduktion besitzt und das CALA intensiv erforschen wird (Spezialgebiet von Prof. Pfeiffer). Die Anforderungen an die Brillanz der Röntgenquelle werden bisher nur von Synchrotronquellen erfüllt, die jedoch wegen ihrer Größe und hohen Kosten nicht für klinische Anwendungen in Frage kommen. CALA strebt daher die Entwicklung kompakter Röntgenquellen ähnlicher Brillanz an, die auf verschiedenste Weise von moderner Hochleistungs-Lasertechnologie Gebrauch machen. Die konventionelle Erzeugung von Röntgenstrahlung beruht auf einem Zweistufenprozess, der erstens die Erzeugung und Beschleunigung von Elektronen und zweitens deren Nutzung zur Generierung von Röntgenstrahlen umfasst. Moderne Hochleistungslaser, wie sie in CALA entwickelt werden, bringen in beiden Schritten große Vorteile.
Zunächst wird CALA die Bright X-Ray Source (BRIX) verwirklichen. Die in einem konventionellen Linearbeschleuniger erzeugten und in einem Speicherring zirkulierenden Elektronenpulse werden an fokussierten Lichtpulsen in einem Überhöhungsresonator rückgestreut. Dabei entsteht gut gebündelte, schmalbandige Röntgenstrahlung im gewünschten Energiebereich, deren Brillanz die von herkömmlichen Quellen um mehr als zwei Größenordnungen übersteigt und für die Früherkennung und präzisen Abbildung von Kleinsttumoren geeignet ist. Auf diesem Gebiet haben LMU-Physiker hervorragende Expertise.

Alternativ können die Elektronenpulse auch durch Bestrahlung kleiner gasförmiger Wasserstofftargets mit nur wenigen Lichtzyklen langen Petawatt-Laserpulsen erzeugt werden. Die damit erzielbaren Elektronenenergien ermöglichen Röntgenpulse für zukünftige klinische Anwendungen in der Humandiagnostik.

Die lasererzeugten Elektronenpulse können auch in einer periodischen Permanent-Magnetfeldstruktur (Undulator) zur Erzeugung von Röntgenpulsen verwendet werden. Diese Röntgenpulse dauern nur wenige Femtosekunden, sie eignen sich für erste Experimente zur ultraschnellen Strahlenbiologie. Die Weiterentwicklung der Quelle zielt auf einen laserbasierten Röntgenlaser, dessen Pulse mit Hilfe von Teilchenpulsen molekulare Strahlenbiologie in Echtzeit ermöglicht.

Tumortherapie mit Teilchenstrahlen

Zur Strahlentherapie von Tumoren werden gegenwärtig überwiegend ultraharte Röntgenstrahlen eingesetzt. Seit einigen Jahren steigt das klinische Interesse, als Alternative zur Röntgenstrahlung hochenergetische Protonen und Kohlenstoffionen zu verwenden. Damit lassen sich wesentlich bessere Dosisverteilungen mit deutlich geringerem Risiko für Nebenwirkungen erreichen. Allerdings ist die nötige Beschleuniger- und Strahlführungstechnik vor allem bei Einsatz von Kohlenstoffionen sehr aufwändig, so dass schon allein aus Kostengründen die Teilchentherapie bisher nur an wenigen Zentren weltweit verfügbar ist.

Dies könnte sich durch den Einsatz laserbasierter Teilchenbeschleunigung ändern, die deutlich kompaktere Strahlungsquellen und Applikationssysteme verspricht. Der von CALA verfolgte Beschleunigungsmechanismus beruht auf dem enormen Lichtdruck, den ein scharf fokussierter, einige Lichtzyklen langer Petawatt-Puls auf eine Diamantfolie von nur wenigen Nanometer Dicke (eine Spezialität der LMU-Physik) ausübt und diese sehr effizient als quasineutrales Plasmapaket auf die gewünschte Energie beschleunigt. Durch magnetische Absonderung der Elektronen bleibt ein reiner Kohlenstoffionenstrahl übrig.

Durch Anreicherung der Diamantfolie mit Wasserstoff können auch Protonenstrahlen erzeugt werden. Der wesentliche Unterschied zu konventionell erzeugten Teilchenstrahlen liegt in der hohen Gesamtzahl der Ionen pro Puls (1012 gegenüber 107 bis 1010) und der kurzen Pulsdauer (Femtosekunden gegenüber Sekunden). Der Strahltransport vom primären (Folie) zum sekundären Target (Patient) und insbesondere die Entwicklung eines kompakten 3D-Bestrahlungsapparates, ist eine weitere Aufgabe, die intensiver Bearbeitung bedarf.

CALA wird zunächst die Realisierbarkeit laserbasierter Teilchentherapie am Kleintiermodell erforschen. Das längerfristige Ziel ist die Übertragung der dabei entwickelten Methoden auf die Anforderungen der Humanmedizin.

Ein weltweit einzigartiges Forschungszentrum

Aufgrund des einzigartigen Spektrums an Röntgen- und Teilchenstrahlquellen wird CALA dem Ensemble an Exzellenzclustern im Münchener Raum, sowie der LMU und der TUM in den Bereichen Biochemie, Physik und Materialwissenschaften neue Forschungsfelder eröffnen. CALA wird darüber hinaus hochqualifizierte Arbeitsplätze schaffen und aufgrund seiner Alleinstellungsmerkmale mit weltweitem Zuspruch rechnen dürfen.

Kooperationspartner von CALA:
Ludwig-Maximilians-Universität, München (LMU)
Technische Universität, München (TUM)
Max-Planck-Institut für Quantenoptik (MPQ), Garching
Siemens Health Care, Erlangen
Pressekontakt:
Thorsten Naeser
Max-Planck-Institut für Quantenoptik, Garching,
Labor für Attosekundenphysik - LAP
(Professor Ferenc Krausz)
Tel: +49 89 32905-124,
Fax: +49 89 32905-649
E-Mail: Thorsten.naeser@mpq.mpg.de

Christine Kortenbruck | idw
Weitere Informationen:
http://www.munich-photonics.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten