Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbulenzen im Kristall

01.03.2013
Ultrakurzzeitphysiker beobachten, welche Auswirkungen Elektronenverschiebungen im Kristall auf den gesamten Festkörper haben.

Wenn auf einen Festkörper intensives Licht trifft, dann kommt sein atomares Innenleben in Bewegung. In Titanoxid, einem Halbleiter, beobachtete nun ein Team von Ultrakurzzeitphysikern vom Max-Planck-Institut für Quantenoptik in Garching (MPQ), der Technischen Universität München (TUM), dem Fritz-Haber-Institut in Berlin (FHI) und der Universität Kassel wie sich die Anordnung von Elektronen und Atomkernen verändert, wenn starkes Laserlicht auf den Titandioxid-Kristall trifft.


Bild 1: Ein ultravioletter Lichtpuls trifft einen Titandioxid-Festkörper. Das Licht löst Verschiebungen von locker an Atome gebundenen Elektronen aus, wodurch sich die Ruheposition der Atome im Kristallgitter verschiebt.
©Thorsten Naeser


Bild 2: Schematische Darstellung des Experiments. Ein extrem kurzer ultravioletter Lichtpuls von 5 Femtosekunden Dauer erzeugt heiße, angeregte Elektronen in Titandioxid. Dadurch ändert sich die räumliche Verteilung der Elektronen innerhalb des Gitters, was eine Verschiebung der Gitter-Potentialflächen, d.h. der Ruheposition der Atome, bewirkt (mittleres Bild). Die anschließende Abkühlung der Elektronen, die nach etwa 20 Femtosekunden abgeschlossen ist, verstärkt diesen Effekt noch weiter (rechtes Bild). Diese Kombination übt eine Kraft auf die Sauerstoffatome aus, die eine kohärente Schwingung des Kristalls bewirkt.
©Alexander Paarmann

Die Forscher wiesen nach, dass selbst kleine Veränderungen in der Elektronenverteilung, ausgelöst durch eine Anregung mit ultrakurzen Laserpulsen, eine große Wirkung auf das gesamte Kristallgitter haben können.

Das Wissen um die Wechselwirkung zwischen Licht und Materie in atomaren Dimensionen gleicht einer Landkarte mit vielen weißen Flecken. Unzählige Phänomene harren hier ihrer Entdeckung. Einen neuen, bisher unbekannten Aspekt des Licht-Materie-Wechselspiels in Kristallen hat ein Team aus Ultrakurzzeitphysikern vom Max-Planck-Institut für Quantenoptik in Garching, der Technischen Universität München, dem Fritz-Haber-Institut in Berlin und der Universität Kassel mit Laserpulsen von wenigen Femtosekunden (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde) untersucht.

Die Physiker schickten einen intensiven, ultravioletten Laserpuls mit einer Dauer von weniger als fünf Femtosekunden auf den Titandioxid-Kristall (bestehend aus Titan und Sauerstoffatomen). Dadurch gerieten die Valenzelektronen der Atome in Bewegung und erhitzten sich auf mehrere Tausend Grad Celsius. Valenzelektronen sind locker an Atome gebundene Elektronen, sie treten in starke Wechselwirkung miteinander und bilden dadurch eine Art Klebstoff, der die Atomrümpfe in einem Kristallgitter zusammenhält. Eigenschaften eines Materials, wie etwa die elektrische Leitfähigkeit, die optischen Eigenschaften oder die Gitterstruktur, werden durch das permanente Wechselspiel zwischen der Position der Atomrümpfe und deren Valenzelektronen bestimmt.

Wenige Femtosekunden nach dem ersten Laserpuls schickten die Physiker einen zweiten, etwas schwächeren Puls auf den Kristall. Dieser wurde an der Oberfläche reflektiert und gab den Forschern dadurch Auskunft über die Veränderungen, die der erste Puls im Kristall hervorgerufen hatte: Das starke Licht des ersten Pulses erhitzte nicht nur die Valenzelektronen, es veränderte auch deren Position im Atomgitter. Die Elektronendichte wurde in der Umgebung der Sauerstoffkerne verringert und in der Umgebung der Titankerne erhöht. Die Verschiebung des Gleichgewichts bedeutete wiederum, dass sich die Ruheposition der Sauerstoffatome relativ zur Ruheposition der Titanatome verschob. Letztendlich begannen die Sauerstoff-Atomrümpfe zu schwingen. Dieser Effekt lässt sich mit einer Kugel (Sauerstoffatom) in einer Schale (gesamter Kristall) veranschaulichen. Im Grundzustand befindet sich die Kugel in der Mitte am tiefsten Punkt der Schale. Die Anregung der Elektronen bewirkt eine schlagartige Verschiebung der Schale, die Kugel beginnt um die neue Gleichgewichtslage zu oszillieren.

Bei den Experimenten beobachteten die Physiker einen überraschenden Effekt: Nach der Lichtanregung kühlten die Elektronen innerhalb von rund 20 Femtosekunden auf Raumtemperatur ab. Der Kristall wurde während dieser kurzen Zeit nur minimal erwärmt. Die räumliche Verteilung der Valenzelektronen jedoch veränderte sich markant. Als Konsequenz daraus verschob sich auch die Ruheposition der Atome im Kristallgitter noch um ein ganzes Stück weiter.Eine solche Abhängigkeit der Kristallstruktur von der Temperatur angeregter Elektronen war schon lange theoretisch vorhergesagt. Nun gelang der experimentelle Nachweis. Das Ergebnis zeigt, dass der Gleichgewichtszustand des Festkörpers auch auf kleine Änderungen der Elektronenverteilung extrem stark reagiert. Dieses Wissen könnte später beim Design neuer Materialien von großem Nutzen sein. [Thorsten Naeser]

Originalpublikation:

Elisabeth M. Bothschafter, Alexander Paarmann, Eeuwe S. Zijlstra, Nicholas Karpowicz, Martin E. Garcia, Reinhard Kienberger und Ralph Ernstorfer

“Ultrafast evolution of the excited-state potential energy surface of TiO2 single crystals induced by carrier cooling”
Phys. Rev. Lett. 110, 067402 (2013).

Weitere Informationen erhalten Sie von:

Elisabeth Bothschafter
Labor für Attosekundenphysik
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, 85748 Garching
Tel: +49 (0) 89 / 32 905 – 236
E-Mail: elisabeth.bothschafter@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching
Tel.: +49 (0) 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik