Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Turbulenzen im Kristall

01.03.2013
Ultrakurzzeitphysiker beobachten, welche Auswirkungen Elektronenverschiebungen im Kristall auf den gesamten Festkörper haben.

Wenn auf einen Festkörper intensives Licht trifft, dann kommt sein atomares Innenleben in Bewegung. In Titanoxid, einem Halbleiter, beobachtete nun ein Team von Ultrakurzzeitphysikern vom Max-Planck-Institut für Quantenoptik in Garching (MPQ), der Technischen Universität München (TUM), dem Fritz-Haber-Institut in Berlin (FHI) und der Universität Kassel wie sich die Anordnung von Elektronen und Atomkernen verändert, wenn starkes Laserlicht auf den Titandioxid-Kristall trifft.


Bild 1: Ein ultravioletter Lichtpuls trifft einen Titandioxid-Festkörper. Das Licht löst Verschiebungen von locker an Atome gebundenen Elektronen aus, wodurch sich die Ruheposition der Atome im Kristallgitter verschiebt.
©Thorsten Naeser


Bild 2: Schematische Darstellung des Experiments. Ein extrem kurzer ultravioletter Lichtpuls von 5 Femtosekunden Dauer erzeugt heiße, angeregte Elektronen in Titandioxid. Dadurch ändert sich die räumliche Verteilung der Elektronen innerhalb des Gitters, was eine Verschiebung der Gitter-Potentialflächen, d.h. der Ruheposition der Atome, bewirkt (mittleres Bild). Die anschließende Abkühlung der Elektronen, die nach etwa 20 Femtosekunden abgeschlossen ist, verstärkt diesen Effekt noch weiter (rechtes Bild). Diese Kombination übt eine Kraft auf die Sauerstoffatome aus, die eine kohärente Schwingung des Kristalls bewirkt.
©Alexander Paarmann

Die Forscher wiesen nach, dass selbst kleine Veränderungen in der Elektronenverteilung, ausgelöst durch eine Anregung mit ultrakurzen Laserpulsen, eine große Wirkung auf das gesamte Kristallgitter haben können.

Das Wissen um die Wechselwirkung zwischen Licht und Materie in atomaren Dimensionen gleicht einer Landkarte mit vielen weißen Flecken. Unzählige Phänomene harren hier ihrer Entdeckung. Einen neuen, bisher unbekannten Aspekt des Licht-Materie-Wechselspiels in Kristallen hat ein Team aus Ultrakurzzeitphysikern vom Max-Planck-Institut für Quantenoptik in Garching, der Technischen Universität München, dem Fritz-Haber-Institut in Berlin und der Universität Kassel mit Laserpulsen von wenigen Femtosekunden (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde) untersucht.

Die Physiker schickten einen intensiven, ultravioletten Laserpuls mit einer Dauer von weniger als fünf Femtosekunden auf den Titandioxid-Kristall (bestehend aus Titan und Sauerstoffatomen). Dadurch gerieten die Valenzelektronen der Atome in Bewegung und erhitzten sich auf mehrere Tausend Grad Celsius. Valenzelektronen sind locker an Atome gebundene Elektronen, sie treten in starke Wechselwirkung miteinander und bilden dadurch eine Art Klebstoff, der die Atomrümpfe in einem Kristallgitter zusammenhält. Eigenschaften eines Materials, wie etwa die elektrische Leitfähigkeit, die optischen Eigenschaften oder die Gitterstruktur, werden durch das permanente Wechselspiel zwischen der Position der Atomrümpfe und deren Valenzelektronen bestimmt.

Wenige Femtosekunden nach dem ersten Laserpuls schickten die Physiker einen zweiten, etwas schwächeren Puls auf den Kristall. Dieser wurde an der Oberfläche reflektiert und gab den Forschern dadurch Auskunft über die Veränderungen, die der erste Puls im Kristall hervorgerufen hatte: Das starke Licht des ersten Pulses erhitzte nicht nur die Valenzelektronen, es veränderte auch deren Position im Atomgitter. Die Elektronendichte wurde in der Umgebung der Sauerstoffkerne verringert und in der Umgebung der Titankerne erhöht. Die Verschiebung des Gleichgewichts bedeutete wiederum, dass sich die Ruheposition der Sauerstoffatome relativ zur Ruheposition der Titanatome verschob. Letztendlich begannen die Sauerstoff-Atomrümpfe zu schwingen. Dieser Effekt lässt sich mit einer Kugel (Sauerstoffatom) in einer Schale (gesamter Kristall) veranschaulichen. Im Grundzustand befindet sich die Kugel in der Mitte am tiefsten Punkt der Schale. Die Anregung der Elektronen bewirkt eine schlagartige Verschiebung der Schale, die Kugel beginnt um die neue Gleichgewichtslage zu oszillieren.

Bei den Experimenten beobachteten die Physiker einen überraschenden Effekt: Nach der Lichtanregung kühlten die Elektronen innerhalb von rund 20 Femtosekunden auf Raumtemperatur ab. Der Kristall wurde während dieser kurzen Zeit nur minimal erwärmt. Die räumliche Verteilung der Valenzelektronen jedoch veränderte sich markant. Als Konsequenz daraus verschob sich auch die Ruheposition der Atome im Kristallgitter noch um ein ganzes Stück weiter.Eine solche Abhängigkeit der Kristallstruktur von der Temperatur angeregter Elektronen war schon lange theoretisch vorhergesagt. Nun gelang der experimentelle Nachweis. Das Ergebnis zeigt, dass der Gleichgewichtszustand des Festkörpers auch auf kleine Änderungen der Elektronenverteilung extrem stark reagiert. Dieses Wissen könnte später beim Design neuer Materialien von großem Nutzen sein. [Thorsten Naeser]

Originalpublikation:

Elisabeth M. Bothschafter, Alexander Paarmann, Eeuwe S. Zijlstra, Nicholas Karpowicz, Martin E. Garcia, Reinhard Kienberger und Ralph Ernstorfer

“Ultrafast evolution of the excited-state potential energy surface of TiO2 single crystals induced by carrier cooling”
Phys. Rev. Lett. 110, 067402 (2013).

Weitere Informationen erhalten Sie von:

Elisabeth Bothschafter
Labor für Attosekundenphysik
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, 85748 Garching
Tel: +49 (0) 89 / 32 905 – 236
E-Mail: elisabeth.bothschafter@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching
Tel.: +49 (0) 89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik