Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tiefer Blick in die Quantenwelt

08.09.2008
Neues Konzept zur Herstellung von Quantenzuständen in Vielteilchensystemen

Einen ganz neuen Weg zur Präparation von Quantenzuständen in Vielteilchensystemen präsentieren Theoretische Physiker der Univesitäten Innsbruck und Stuttgart heute in der Online-Ausgabe der Fachzeitschrift Nature Physics.

Damit könnten sich erstmals auch angeregte Vielteilchenzustände gezielt herstellen lassen, was wiederum große Bedeutung für die Untersuchung von Festkörpern hätte.

Die quantenphysikalische Analyse von Vielteilchensystemen ist von besonderem Interesse, weil an ihnen die Innenwelt von Festkörpern modellhaft erforscht werden kann. Dieser tiefe, quantenphysikalische Blick in die feste Materie war bisher durch die extrem hohe Komplexität verwehrt. Theoretiker um Sebastian Diehl, Andrea Micheli, Barbara Kraus und Peter Zoller vom Institut für Theoretische Physik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften (ÖAW) und Hans Peter Büchler vom Institut für Theoretische Physik III der Universität Stuttgart haben nun einen neuen theoretischen Vorschlag für die Präparation von Quantenzuständen in Vielteilchensystemen entwickelt.

Sie bedienen sich dazu eines Tricks: Dissipation beschreibt in der klassischen Physik beispielsweise den Übergang von Bewegungsenergie in Wärmeenergie durch Reibung. „Während Dissipation den Grad der Unordnung in einem System normalerweise dramatisch erhöht, drehen wir den Spieß um“, erzählt Sebastian Diehl. „Wir nutzen die Dissipation, um einen perfekt reinen Vielteilchenzustand mit langreichweitiger Ordnung herzustellen.“

Ordnung durch Dissipation

Das System, an dem die Wissenschaftler ihr Verfahren theoretisch erproben, besteht aus einer großen Zahl von Atomen, die in einem optischen Gitter aus Laserstrahlen gefangen sind. Ordnung schaffen die Forscher, indem sie das Teilchenensemble mit einem weiteren Laser anregen und gleichzeitig die spontane Emission in ein ultrakaltes Gas in der Umgebung (Dissipation) ermöglichen. „Dabei wird die Kohärenz des anregenden Laserstrahls auf das atomare Materiesystem übertragen“, erläutert Diehl die Idee hinter dem neuen Verfahren. „Überraschend und den Gesetzen der Quantenphysik geschuldet ist, dass die Atome zwar nur lokal manipuliert werden, die Ordnung aber dennoch im gesamten System hergestellt wird.“

Auch angeregte Quantenzustände sind möglich

„Wir kombinieren in diesem Modellsystem Methoden aus der Quantenoptik und der Atomphysik mit Techniken der Festkörperphysik“, erläutert der Leiter der Forschungsgruppe, Prof. Peter Zoller. Der interdisziplinäre Ansatz könnte auch für Anwendungen in der Quanteninformationsverarbeitung interessant sein. Die Theoretiker wollen ihre Idee nun auf noch komplexere Systeme anwenden und zum Beispiel auch experimentelle Verfahren für die Untersuchung eines sehr prominenten Problems der Festkörperphysik, der Hochtemperatursupraleitung, vorschlagen. Hier kommt ein Vorteil ihres neuen Verfahrens zum Tragen, den bisherige Ansätze nicht boten: „Mit der Methode wird es möglich, Zustände zu präparieren, die angeregten Vielteilchenzuständen entsprechen. Durch das konventionell angewendete Kühlen eines Teilchensystems wäre dies niemals in reiner Form möglich“, betonen Sebastian Diehl und seine Forschungskollegen.

Unterstützt werden die Wissenschaftler bei ihren Forschungen vom österreichischen Wissenschaftsfonds (FWF), der Österreichischen Akademie der Wissenschaften (ÖAW) und der Europäischen Union.

Publikation: Quantum states and phases in driven open quantum systems with cold atoms. Diehl S, Micheli A, Kantian A, Kraus B, Büchler HP, Zoller P. Nature Physics, Advanced Online Publication am 7. September 2008 (doi: 10.1038/nphys1073)

Kontakt:
Dr. Sebastian Diehl
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Technikerstrasse 21, A-6020 Innsbruck
Tel.: +43 512 507- 4785
E-Mail: Sebastian.Diehl@oeaw.ac.at
Dr. Christian Flatz
Public Relations
Institut für Quantenoptik und Quanteninformation
Österreichische Akademie der Wissenschaften
Technikerstraße 21a, A-6020 Innsbruck,
Tel. +43 650 5777122
E-Mail: pr-iqoqi@oeaw.ac.at

Dr. Christian Flatz | IQOQI
Weitere Informationen:
http://www.iqoqi.at/media/download/
http://www.uibk.ac.at/th-physik/qo/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Physiker designen ultrascharfe Pulse
27.07.2017 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie