Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Terahertzstrahlung: Eine Quelle für sichere Lebensmittel

16.06.2016

Für die Kontrolle von Lebensmitteln und Medikamenten könnte es künftig ein leistungsfähiges und preiswertes Instrument geben. Wissenschaftler des Berliner Fritz-Haber-Institutes der Max-Planck-Gesellschaft haben mit nationalen und internationalen Partnern eine neuartige Quelle für Terahertzstrahlung entwickelt. Somit wird es deutlich einfacher, diese Strahlung zu erzeugen, die sich gut zur Analyse weicher Materialien eignet und daher künftig vermehrt in der Lebensmittel- und Pharmaindustrie Anwendung finden könnte.

Terahertzwellen liegen im elektromagnetischen Spektrum im Frequenzbereich von etwa 0,3 bis 30 Terahertz – zwischen den Mikrowellen und dem infraroten Licht. Sie sind für die Analyse von organischem Material nützlich, weil sie etwa Textilien und Kunststoffe durchdringt, andererseits von vielen Pharmaka auf charakteristische Weise absorbiert wird. Anders als etwa Röntgenstrahlen sind Terahertzstrahlen zudem gesundheitlich unbedenklich.


Ein Laserimpuls treibt Elektronen aus einer magnetischen in eine nichtmagnetische Metallschicht. Der dabei entstehende Strom entlang des roten Pfeils erzeugt den Terahertz-Impuls.

FHI/Nature Photonics 2016


Kompakt und kostengünstig: Tom Seifert, Doktorand des Fritz-Haber-Instituts, präsentiert eine Quelle für Strahlung des ganzen Terahertzspektrums.

Fritz-Haber-Institut der MPG

Eine große Bandbreite für die Lebensmittel- und Pharmaindustrie

„Durch unseren Ansatz, Terahertzstrahlung zu erzeugen, werden Anwendungen möglich, für die solche Quellen bislang zu teuer waren“, sagt Tobias Kampfrath, Leiter der Terahertz-Physik-Forschungsgruppe am Fritz-Haber-Institut, die bei der Entwicklung des Konzeptes federführend war.

Die Terahertzquelle, die sein Team und ihre Partner in Mainz, Greifswald und Jülich sowie in den USA, Schweden und Frankreich nun vorstellen, erzeugt erstmals mit relativ wenig Aufwand die gesamte Bandbreite an Terahertzstrahlung.

Das ist vor allem für die Kontrolle von Lebensmitteln und Medikamenten nützlich, weil Analysen über den gesamten Terahertzbereich hinweg auf mehr Stoffe ansprechen und daher aussagekräftigere Resultate liefern. Derzeit sind Apparate, die das gesamte Spektrum der Terahertzstrahlung erzeugen, noch teuer und groß, weil sie mit sehr leistungsstarken Lasern betrieben werden.

„Unser Emitter erzeugt das gesamte Spektrum von 1 bis 30 Terahertz und eignet sich dabei auch für Tischgeräte. Außerdem ist er energieeffizienter, einfacher zu bedienen und kostengünstiger in der Herstellung als bisherige Quellen“, sagt Tom Seifert, Doktorand am Fritz-Haber-Institut. „Wir erwarten, dass er rasch und breit eingesetzt wird.“

Ein kurzer Stromstoß macht eine metallische Doppelschicht zur Antenne

Die Quelle nutzt einen kompakten Femtosekundenlaser, der 80 Millionen ultrakurze Lichtblitze pro Sekunde erzeugt. Der eigentliche Emitter, den der Laser anregt, ähnelt einer Solarzelle. Er besteht allerdings aus einer magnetischen und einer nicht-magnetischen Metallschicht, die jeweils nur drei Nanometer dick sind und auf einem Glasträger aufgebracht sind. Wenn ein ultrakurzer Laserblitz auf das Material trifft, erzeugt er einen Stromstoß, so dass die metallische Doppelschicht zu einer Sendeantenne für elektromagnetische Wellen mit Terahertzfrequenzen wird.

„Der Emitter funktioniert so gut, weil wir zusätzlich zur Ladung der Elektronen auch ihren Spin nutzen“, sagt Tom Seifert. Der Spin ist eine magnetische Eigenschaft der Elektronen und bewirkt, dass sich Strom in magnetischen Metallen anders verhält als in nichtmagnetischen. Das Laserlicht mobilisiert in der magnetischen Schicht zunächst unterschiedlich viele Elektronen der beiden möglichen Spin-Orientierungen. Die Ladungsträger fließen dann in die nicht-magnetische Schicht.

Dort werden sie abhängig von ihrem Spin in entgegengesetzte Richtungen abgelenkt. So entsteht ein Strom senkrecht zur ursprünglichen Bewegungsrichtung der Elektronen. Genau dieser Stromstoß erzeugt dann den Terahertz-Impuls. Da der metallische Doppelfilm extrem dünn ist, wird die elektromagnetische Strahlung auf ihrem Weg aus dem Metall kaum abgeschwächt, wie es in einer dickeren Schicht der Fall wäre.

TK/PH

Kontakt:
Dr. Tobias Kampfrath
Fritz-Haber-Institut der MPG
Mail: kampfrath@fhi-berlin.mpg.de
Tel.: +49 30 8413-5222

Originalveröffentlichung:
Efficient metallic spintronic emitters of ultrabroadband terahertz radiation
T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui und T. Kampfrath,
Nature Photonics, 23. Mai 2016; DOI: 10.1038/NPHOTON.2016.91

Peter Hergersberg | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie