Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Terahertzstrahlung: Eine Quelle für sichere Lebensmittel

16.06.2016

Für die Kontrolle von Lebensmitteln und Medikamenten könnte es künftig ein leistungsfähiges und preiswertes Instrument geben. Wissenschaftler des Berliner Fritz-Haber-Institutes der Max-Planck-Gesellschaft haben mit nationalen und internationalen Partnern eine neuartige Quelle für Terahertzstrahlung entwickelt. Somit wird es deutlich einfacher, diese Strahlung zu erzeugen, die sich gut zur Analyse weicher Materialien eignet und daher künftig vermehrt in der Lebensmittel- und Pharmaindustrie Anwendung finden könnte.

Terahertzwellen liegen im elektromagnetischen Spektrum im Frequenzbereich von etwa 0,3 bis 30 Terahertz – zwischen den Mikrowellen und dem infraroten Licht. Sie sind für die Analyse von organischem Material nützlich, weil sie etwa Textilien und Kunststoffe durchdringt, andererseits von vielen Pharmaka auf charakteristische Weise absorbiert wird. Anders als etwa Röntgenstrahlen sind Terahertzstrahlen zudem gesundheitlich unbedenklich.


Ein Laserimpuls treibt Elektronen aus einer magnetischen in eine nichtmagnetische Metallschicht. Der dabei entstehende Strom entlang des roten Pfeils erzeugt den Terahertz-Impuls.

FHI/Nature Photonics 2016


Kompakt und kostengünstig: Tom Seifert, Doktorand des Fritz-Haber-Instituts, präsentiert eine Quelle für Strahlung des ganzen Terahertzspektrums.

Fritz-Haber-Institut der MPG

Eine große Bandbreite für die Lebensmittel- und Pharmaindustrie

„Durch unseren Ansatz, Terahertzstrahlung zu erzeugen, werden Anwendungen möglich, für die solche Quellen bislang zu teuer waren“, sagt Tobias Kampfrath, Leiter der Terahertz-Physik-Forschungsgruppe am Fritz-Haber-Institut, die bei der Entwicklung des Konzeptes federführend war.

Die Terahertzquelle, die sein Team und ihre Partner in Mainz, Greifswald und Jülich sowie in den USA, Schweden und Frankreich nun vorstellen, erzeugt erstmals mit relativ wenig Aufwand die gesamte Bandbreite an Terahertzstrahlung.

Das ist vor allem für die Kontrolle von Lebensmitteln und Medikamenten nützlich, weil Analysen über den gesamten Terahertzbereich hinweg auf mehr Stoffe ansprechen und daher aussagekräftigere Resultate liefern. Derzeit sind Apparate, die das gesamte Spektrum der Terahertzstrahlung erzeugen, noch teuer und groß, weil sie mit sehr leistungsstarken Lasern betrieben werden.

„Unser Emitter erzeugt das gesamte Spektrum von 1 bis 30 Terahertz und eignet sich dabei auch für Tischgeräte. Außerdem ist er energieeffizienter, einfacher zu bedienen und kostengünstiger in der Herstellung als bisherige Quellen“, sagt Tom Seifert, Doktorand am Fritz-Haber-Institut. „Wir erwarten, dass er rasch und breit eingesetzt wird.“

Ein kurzer Stromstoß macht eine metallische Doppelschicht zur Antenne

Die Quelle nutzt einen kompakten Femtosekundenlaser, der 80 Millionen ultrakurze Lichtblitze pro Sekunde erzeugt. Der eigentliche Emitter, den der Laser anregt, ähnelt einer Solarzelle. Er besteht allerdings aus einer magnetischen und einer nicht-magnetischen Metallschicht, die jeweils nur drei Nanometer dick sind und auf einem Glasträger aufgebracht sind. Wenn ein ultrakurzer Laserblitz auf das Material trifft, erzeugt er einen Stromstoß, so dass die metallische Doppelschicht zu einer Sendeantenne für elektromagnetische Wellen mit Terahertzfrequenzen wird.

„Der Emitter funktioniert so gut, weil wir zusätzlich zur Ladung der Elektronen auch ihren Spin nutzen“, sagt Tom Seifert. Der Spin ist eine magnetische Eigenschaft der Elektronen und bewirkt, dass sich Strom in magnetischen Metallen anders verhält als in nichtmagnetischen. Das Laserlicht mobilisiert in der magnetischen Schicht zunächst unterschiedlich viele Elektronen der beiden möglichen Spin-Orientierungen. Die Ladungsträger fließen dann in die nicht-magnetische Schicht.

Dort werden sie abhängig von ihrem Spin in entgegengesetzte Richtungen abgelenkt. So entsteht ein Strom senkrecht zur ursprünglichen Bewegungsrichtung der Elektronen. Genau dieser Stromstoß erzeugt dann den Terahertz-Impuls. Da der metallische Doppelfilm extrem dünn ist, wird die elektromagnetische Strahlung auf ihrem Weg aus dem Metall kaum abgeschwächt, wie es in einer dickeren Schicht der Fall wäre.

TK/PH

Kontakt:
Dr. Tobias Kampfrath
Fritz-Haber-Institut der MPG
Mail: kampfrath@fhi-berlin.mpg.de
Tel.: +49 30 8413-5222

Originalveröffentlichung:
Efficient metallic spintronic emitters of ultrabroadband terahertz radiation
T. Seifert, S. Jaiswal, U. Martens, J. Hannegan, L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg, J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov, P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich, L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui und T. Kampfrath,
Nature Photonics, 23. Mai 2016; DOI: 10.1038/NPHOTON.2016.91

Peter Hergersberg | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Weitere Informationen:
http://www.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise