Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teilchenphysik: Roulettespiel im Mikrokosmos

23.10.2015

Physiker der Universität Bonn haben am Computer simuliert, wie es bestimmten Teilchen in einer neutronenreichen Umgebung ergeht. Dazu nutzten sie ein neuartiges Rechenverfahren – und kamen damit zu einem unerwarteten Ergebnis. An der Arbeit waren auch Forscher der TU Darmstadt und der North Carolina State University beteiligt. Die Resultate erscheinen heute in den „Physical Review Letters“.

Wenn man einen Magneten auf einen Tisch legt und einen zweiten darüber hält, erscheint dieser aufgrund der Anziehung durch den ersten Magneten schwerer, als er eigentlich ist. Durch die Wechselwirkung der beiden entsteht also scheinbar etwas Neues mit veränderten Eigenschaften.


Dr. Shahin B. Bour

Foto: Volker Lannert/Uni Bonn

Das ist ein einfaches Model für ein so genanntes Quasi-Teilchen. Verringert man nun sukzessive den Abstand der Magneten, wird die Anziehungskraft zwischen ihnen immer größer. Irgendwann ist sie so groß, dass sie die Schwerkraft überwiegt: Die beiden Magneten schnappen zusammen.

Ganz ähnlich geht es im Mikrokosmos zu. Auch kleinste Materieteilchen können miteinander in Wechselwirkung treten und dabei Quasi-Teilchen bilden. Wenn diese Wechselwirkung stark genug ist, schnappen die Teilchen ebenfalls zusammen: Sie binden aneinander.

Doch was geschieht dabei genau? Experimentell lässt sich diese Frage nur eingeschränkt beantworten. Die Wissenschaftler haben den Vorgang daher am Computer nachgestellt. In ihrer Simulation ließen sie dazu ein fremdes Teilchen – eine Verunreinigung – in einen „See“ von Neutronen eintauchen. Dabei variierten sie, wie stark das Teilchen mit den Neutronen wechselwirkte.

Widerspruch zur Theorie

Bei einer schwachen Wechselwirkung würde man lediglich erwarten, dass das fremde Teilchen die Neutronen etwas zu sich herüberzieht und so ein Quasi-Teilchen mit größerer Masse entsteht. Bei einer starken Wechselwirkung sollte das Teilchen dagegen mit einem Neutron eine Bindung eingehen – genauso, wie zwei Magneten zusammenschnappen.

„Wir haben erwartet, dass es einen scharfen Übergang gibt: Wird ein Grenzwert für die Stärke der Wechselwirkung überschritten, kommt es zur Bindung“, erklärt Dr. Shahin B. Bour vom Helmholtz-Institut für Strahlen- und Kernphysik der Universität Bonn. „Stattdessen haben wir festgestellt, dass dieser Übergang fließend ist: Je stärker das Teilchen mit dem Neutron wechselwirkt, desto stärker wird die Bindung zwischen ihnen.“ Dieses Verhalten widerspricht theoretischen Vorhersagen, die einen plötzlichen Übergang prognostizieren.

Die Wissenschaftler mussten für ihre Studie eigens ein neues Modellierungsverfahren entwickeln. Es fußt auf einem Algorithmus, der nicht zu Unrecht den Namen „Monte-Carlo-Simulation“ trägt. Wer seine Chancen beim Roulettespiel abschätzen möchte, kann einige Tage dem Croupier über die Schulter schauen und sich notieren, wie die Kugel fällt. Er kann das Roulettespiel jedoch auch im Computer nachbilden und dort eine virtuelle Kugel auf die Reise über die Drehscheibe schicken. Und das im Prinzip viele hunderttausend Mal.

Beim Roulette ist diese Vorgehensweise eigentlich nicht nötig. Die Gewinnchancen lassen sich schließlich ziemlich einfach berechnen – es bedarf dazu keiner Computersimulation. Wer aber beispielsweise wissen möchte, wie ein Regentropfen fällt – ob er durch die Kollision mit anderen Tropfen wächst oder schrumpft, ob er als Schneeflocke oder Hagelkorn auf dem Boden auftrifft –, der kommt um Monte-Carlo-Simulationen kaum herum.

Was passiert in Neutronensternen?

Die Fragestellung, die die Wissenschaftler mit ihrer Simulation beantworten, ist keineswegs nur von akademischem Interesse. „Ganz ähnliche Prozesse spielen sich beispielsweise in Neutronensternen ab“, betont Dr. Bour. „Wir wollen unsere Methode nutzen, um diese Vorgänge zu simulieren. So können wir genauer verstehen, was über unseren Köpfen passiert.“

Publikation: Shahin Bour, Dean Lee, H.-W. Hammer, und Ulf-G. Meißner: Ab initio lattice results for Fermi polarons in two dimensions; Physical Review Letters, Internet: http://arxiv.org/abs/1412.8175)

Kontakt für die Medien:

Dr. Shahin B. Bour
Helmholtz-Institut für
Strahlen- und Kernphysik
der Universität Bonn
Tel. 0228/733312
E-Mail: bour@hiskp.uni-bonn.de

Weitere Informationen:

http://arxiv.org/abs/1412.8175

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bonn.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Gravitationswellen als Sensor für Dunkle Materie
06.12.2016 | Max-Planck-Institut für Kernphysik

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher entwickeln Unterwasser-Observatorium

07.12.2016 | Biowissenschaften Chemie

HIV: Spur führt ins Recycling-System der Zelle

07.12.2016 | Biowissenschaften Chemie

Mehrkernprozessoren für Mobilität und Industrie 4.0

07.12.2016 | Informationstechnologie