Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleitung mit Magnetfeld eingeschaltet

23.12.2013
Meist sieht man Supraleitung und Magnetfelder als Konkurrenten – sehr starke Magnetfelder zerstören in der Regel den supraleitenden Zustand.

Physiker des Paul Scherrer Instituts PSI haben nun gezeigt, dass in dem Material CeCoIn5 ein neuartiger supraleitender Zustand erst bei starken externen Magnetfeldern entsteht und dann durch Veränderung des Feldes manipuliert werden kann.


Michel Kenzelmann stellt die Gaszufuhr an einem Hochfeld-Magneten ein, der für die Experimente an CeCoIn5 an der Neutronenquelle SINQ gebraucht worden ist.

Foto: Paul Scherrer Institut/Markus Fischer


Simon Gerber, Erstautor der Veröffentlichung zu den Supraleitenden Eigenschaften von CeCoIn5, am Morpheus-Instrument der Spallations-Neutronenquelle SINQ.

Foto: Paul Scherrer Institut/Markus Fischer

Das Material ist auch schon bei schwächeren Feldern supraleitend, bei starken Feldern entsteht aber ein zusätzlicher zweiter supraleitender Zustand, so dass gleichzeitig im selben Material zwei unterschiedliche supraleitende Zustände existieren.

Das Material CeCoIn5 ist bei sehr niedrigen Temperaturen supraleitend. Bei sehr starken Magnetfeldern wird die Supraleitung wie erwartet zerstört (bei diesem Material oberhalb von 12 Tesla). Forschende des Paul Scherrer Instituts haben nun gezeigt, dass bevor dies geschieht, bei starken Magnetfeldern ein neuer exotischer Zustand des Materials entsteht.

Bei diesem wird zusätzlich zur Supraleitung eine antiferromagnetische Ordnung beobachtet, d.h. die magnetischen Momente (die „Elementarmagnete“) im Material weisen in einer regelmässigen Weise teilweise in eine Richtung und teilweise in die entgegengesetzte. Symmetriebetrachtungen führen dabei zu dem Schluss, dass mit dieser magnetischen Ordnung ein neuartiger Quantenzustand verbunden sein muss, der jedoch nicht unmittelbar beobachtet werden konnte.

Zwei Arten Supraleitung gleichzeitig

Die PSI-Forscher haben die Eigenschaften dieser antiferromagnetischen Ordnung untersucht und geschlossen, dass dieser neuartige Quantenzustand aus einem zweiten, unabhängigen supraleitenden Zustand besteht. Supraleitung entsteht, wenn sich Elektronen in einem Material paarweise zu so genannten Cooper-Paaren zusammenfinden, die sich ungehindert durch das Material bewegen können. Aus der Perspektive der Cooper-Paare gibt es verschiedene Arten von Supraleitung, die sich insbesondere in den Symmetrieeigenschaften der Bewegung der Cooper-Paare unterscheiden. In dem hier untersuchten Material kommt zusätzlich zum schon vorhandenen supraleitenden Zustand noch ein zweiter hinzu. In Fachbegriffen ausgedrückt, hat man zunächst eine d-Wellen-Supraleitung, zu der in dem exotischen Zustand eine p-Wellen-Supraleitung hinzukommt.

Mit Neutronen nachgewiesen

Die antiferromagnetische Ordnung in dem Material ist durch Neutronenexperimente an der Neutronenquelle SINQ des PSI und am Institut Laue Langevin in Grenoble nachgewiesen worden. In solchen Experimenten schickt man einen Neutronenstrahl durch das untersuchte Material und beobachtet, in welche Richtungen besonders viele Neutronen abgelenkt werden. Daraus kann man dann auf regelmässige Strukturen im Inneren des Materials schliessen. In diesem Fall tauchte für hohe Magnetfelder eine weitere Richtung auf, in die viele Neutronen abgelenkt wurden, die der antiferromagnetischen Ordnung. Genau genommen hat man eine Spindichtewelle beobachtet. Das heisst, wenn man sich in eine bestimmte Richtung durch das Material bewegt, weisen die magnetischen Momente erst in eine Richtung, werden grösser, nehmen dann wieder ab, weisen dann in die entgegensetzte Richtung, werden da wieder grösser und nehmen wieder ab. Zeichnet man die Momente als Pfeile auf, lassen sich ihre Spitzen durch eine Wellenlinie verbinden.

Die Spindichtewellen können in diesem Material nur in zwei zueinander senkrechten Richtungen verlaufen, also in zwei verschiedenen Domänen auftreten. In welche Richtung die Spindichtewelle verläuft hängt von der Richtung des angelegten externen Magnetfelds ab. Ändert man die Richtung des Magnetfelds ändert sich für eine bestimmte Richtung abrupt auch die Verlaufsrichtung der Spindichtewelle. Um diesen Effekt nachzuweisen, haben die Forschenden einen speziellen Probenhalter gebaut, mit dem sich die Probe zwischen den Messungen um sehr kleine Winkel verkippen liess.

Quantenzustand gesteuert

„Das beobachtete Verhalten des Materials war total unerwartet, und kann nicht ein rein magnetischer Effekt sein“, erklärt Michel Kenzelmann, Leiter des Forschungsteams am PSI. „Dies ist ein deutlicher Hinweis darauf, dass in dem Material gemeinsam mit der Spindichtewelle auch der neue supraleitende Zustand entsteht, wie dies von Symmetriebetrachtungen auch erwartet wird.“ Das Besondere an diesem Zustand ist, dass er sehr eng mit der magnetischen Ordnung zusammenhängt: wo die magnetischen Momente der magnetischen Ordnung stark sind, ist auch die p-Wellen-Supraleitung besonders präsent, so dass beide stärker werden, wenn man das äussere Magnetfeld stärker macht. Man kann also mit einem externen Magnetfeld direkt den Quantenzustand steuern, der mit der Supraleitung verbunden ist. Die Möglichkeit, Quantenzustände direkt zu steuern ist für mögliche zukünftige Quantencomputer wichtig. „Auch wenn wegen der tiefen Temperaturen und starken Magnetfelder, die hier nötig sind, dieses konkrete Material wohl kaum zum Einsatz kommen wird, zeigen unsere Experimente, wie eine solche Steuerung grundsätzlich aussehen kann“, fügt Simon Gerber, Erstautor der Publikation, hinzu.

Text: Paul Piwnicki

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Kontakt:
Dr. Michel Kenzelmann, Labor für Entwicklung und Methoden, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

Telefon: +41 (0)56 310 5381 E-Mail: michel.kenzelmann@psi.ch

Originalveröffentlichung:
Switching of magnetic domains reveals spatially inhomogeneous superconductivity
Simon Gerber, Marek Bartkowiak, Jorge L. Gavilano, Eric Ressouche, Nikola
Egetenmeyer, Christof Niedermayer, Andrea D. Bianchi, Roman Movshovich, Eric D.
Bauer, Joe D. Thompson and Michel Kenzelmann
Nature Physics Advance Online Publication (AOP) 22. Dezember 2013;
doi: 10.1038/nphys2833; http://dx.doi.org/10.1038/nphys2833

Dagmar Baroke | idw
Weitere Informationen:
http://psi.ch/WY1e
http://www.psi.ch/ldm

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung