Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleitung mit Magnetfeld eingeschaltet

23.12.2013
Meist sieht man Supraleitung und Magnetfelder als Konkurrenten – sehr starke Magnetfelder zerstören in der Regel den supraleitenden Zustand.

Physiker des Paul Scherrer Instituts PSI haben nun gezeigt, dass in dem Material CeCoIn5 ein neuartiger supraleitender Zustand erst bei starken externen Magnetfeldern entsteht und dann durch Veränderung des Feldes manipuliert werden kann.


Michel Kenzelmann stellt die Gaszufuhr an einem Hochfeld-Magneten ein, der für die Experimente an CeCoIn5 an der Neutronenquelle SINQ gebraucht worden ist.

Foto: Paul Scherrer Institut/Markus Fischer


Simon Gerber, Erstautor der Veröffentlichung zu den Supraleitenden Eigenschaften von CeCoIn5, am Morpheus-Instrument der Spallations-Neutronenquelle SINQ.

Foto: Paul Scherrer Institut/Markus Fischer

Das Material ist auch schon bei schwächeren Feldern supraleitend, bei starken Feldern entsteht aber ein zusätzlicher zweiter supraleitender Zustand, so dass gleichzeitig im selben Material zwei unterschiedliche supraleitende Zustände existieren.

Das Material CeCoIn5 ist bei sehr niedrigen Temperaturen supraleitend. Bei sehr starken Magnetfeldern wird die Supraleitung wie erwartet zerstört (bei diesem Material oberhalb von 12 Tesla). Forschende des Paul Scherrer Instituts haben nun gezeigt, dass bevor dies geschieht, bei starken Magnetfeldern ein neuer exotischer Zustand des Materials entsteht.

Bei diesem wird zusätzlich zur Supraleitung eine antiferromagnetische Ordnung beobachtet, d.h. die magnetischen Momente (die „Elementarmagnete“) im Material weisen in einer regelmässigen Weise teilweise in eine Richtung und teilweise in die entgegengesetzte. Symmetriebetrachtungen führen dabei zu dem Schluss, dass mit dieser magnetischen Ordnung ein neuartiger Quantenzustand verbunden sein muss, der jedoch nicht unmittelbar beobachtet werden konnte.

Zwei Arten Supraleitung gleichzeitig

Die PSI-Forscher haben die Eigenschaften dieser antiferromagnetischen Ordnung untersucht und geschlossen, dass dieser neuartige Quantenzustand aus einem zweiten, unabhängigen supraleitenden Zustand besteht. Supraleitung entsteht, wenn sich Elektronen in einem Material paarweise zu so genannten Cooper-Paaren zusammenfinden, die sich ungehindert durch das Material bewegen können. Aus der Perspektive der Cooper-Paare gibt es verschiedene Arten von Supraleitung, die sich insbesondere in den Symmetrieeigenschaften der Bewegung der Cooper-Paare unterscheiden. In dem hier untersuchten Material kommt zusätzlich zum schon vorhandenen supraleitenden Zustand noch ein zweiter hinzu. In Fachbegriffen ausgedrückt, hat man zunächst eine d-Wellen-Supraleitung, zu der in dem exotischen Zustand eine p-Wellen-Supraleitung hinzukommt.

Mit Neutronen nachgewiesen

Die antiferromagnetische Ordnung in dem Material ist durch Neutronenexperimente an der Neutronenquelle SINQ des PSI und am Institut Laue Langevin in Grenoble nachgewiesen worden. In solchen Experimenten schickt man einen Neutronenstrahl durch das untersuchte Material und beobachtet, in welche Richtungen besonders viele Neutronen abgelenkt werden. Daraus kann man dann auf regelmässige Strukturen im Inneren des Materials schliessen. In diesem Fall tauchte für hohe Magnetfelder eine weitere Richtung auf, in die viele Neutronen abgelenkt wurden, die der antiferromagnetischen Ordnung. Genau genommen hat man eine Spindichtewelle beobachtet. Das heisst, wenn man sich in eine bestimmte Richtung durch das Material bewegt, weisen die magnetischen Momente erst in eine Richtung, werden grösser, nehmen dann wieder ab, weisen dann in die entgegensetzte Richtung, werden da wieder grösser und nehmen wieder ab. Zeichnet man die Momente als Pfeile auf, lassen sich ihre Spitzen durch eine Wellenlinie verbinden.

Die Spindichtewellen können in diesem Material nur in zwei zueinander senkrechten Richtungen verlaufen, also in zwei verschiedenen Domänen auftreten. In welche Richtung die Spindichtewelle verläuft hängt von der Richtung des angelegten externen Magnetfelds ab. Ändert man die Richtung des Magnetfelds ändert sich für eine bestimmte Richtung abrupt auch die Verlaufsrichtung der Spindichtewelle. Um diesen Effekt nachzuweisen, haben die Forschenden einen speziellen Probenhalter gebaut, mit dem sich die Probe zwischen den Messungen um sehr kleine Winkel verkippen liess.

Quantenzustand gesteuert

„Das beobachtete Verhalten des Materials war total unerwartet, und kann nicht ein rein magnetischer Effekt sein“, erklärt Michel Kenzelmann, Leiter des Forschungsteams am PSI. „Dies ist ein deutlicher Hinweis darauf, dass in dem Material gemeinsam mit der Spindichtewelle auch der neue supraleitende Zustand entsteht, wie dies von Symmetriebetrachtungen auch erwartet wird.“ Das Besondere an diesem Zustand ist, dass er sehr eng mit der magnetischen Ordnung zusammenhängt: wo die magnetischen Momente der magnetischen Ordnung stark sind, ist auch die p-Wellen-Supraleitung besonders präsent, so dass beide stärker werden, wenn man das äussere Magnetfeld stärker macht. Man kann also mit einem externen Magnetfeld direkt den Quantenzustand steuern, der mit der Supraleitung verbunden ist. Die Möglichkeit, Quantenzustände direkt zu steuern ist für mögliche zukünftige Quantencomputer wichtig. „Auch wenn wegen der tiefen Temperaturen und starken Magnetfelder, die hier nötig sind, dieses konkrete Material wohl kaum zum Einsatz kommen wird, zeigen unsere Experimente, wie eine solche Steuerung grundsätzlich aussehen kann“, fügt Simon Gerber, Erstautor der Publikation, hinzu.

Text: Paul Piwnicki

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Kontakt:
Dr. Michel Kenzelmann, Labor für Entwicklung und Methoden, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

Telefon: +41 (0)56 310 5381 E-Mail: michel.kenzelmann@psi.ch

Originalveröffentlichung:
Switching of magnetic domains reveals spatially inhomogeneous superconductivity
Simon Gerber, Marek Bartkowiak, Jorge L. Gavilano, Eric Ressouche, Nikola
Egetenmeyer, Christof Niedermayer, Andrea D. Bianchi, Roman Movshovich, Eric D.
Bauer, Joe D. Thompson and Michel Kenzelmann
Nature Physics Advance Online Publication (AOP) 22. Dezember 2013;
doi: 10.1038/nphys2833; http://dx.doi.org/10.1038/nphys2833

Dagmar Baroke | idw
Weitere Informationen:
http://psi.ch/WY1e
http://www.psi.ch/ldm

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Internationales Forscherteam entdeckt kohärenten Lichtverstärkungsprozess in Laser-angeregtem Glas
25.09.2017 | Universität Kassel

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Legionellen? Nein danke!

25.09.2017 | Veranstaltungsnachrichten

Hochvolt-Lösungen für die nächste Fahrzeuggeneration!

25.09.2017 | Seminare Workshops

Seminar zum 3D-Drucken am Direct Manufacturing Center am

25.09.2017 | Seminare Workshops