Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleitung mit Magnetfeld eingeschaltet

23.12.2013
Meist sieht man Supraleitung und Magnetfelder als Konkurrenten – sehr starke Magnetfelder zerstören in der Regel den supraleitenden Zustand.

Physiker des Paul Scherrer Instituts PSI haben nun gezeigt, dass in dem Material CeCoIn5 ein neuartiger supraleitender Zustand erst bei starken externen Magnetfeldern entsteht und dann durch Veränderung des Feldes manipuliert werden kann.


Michel Kenzelmann stellt die Gaszufuhr an einem Hochfeld-Magneten ein, der für die Experimente an CeCoIn5 an der Neutronenquelle SINQ gebraucht worden ist.

Foto: Paul Scherrer Institut/Markus Fischer


Simon Gerber, Erstautor der Veröffentlichung zu den Supraleitenden Eigenschaften von CeCoIn5, am Morpheus-Instrument der Spallations-Neutronenquelle SINQ.

Foto: Paul Scherrer Institut/Markus Fischer

Das Material ist auch schon bei schwächeren Feldern supraleitend, bei starken Feldern entsteht aber ein zusätzlicher zweiter supraleitender Zustand, so dass gleichzeitig im selben Material zwei unterschiedliche supraleitende Zustände existieren.

Das Material CeCoIn5 ist bei sehr niedrigen Temperaturen supraleitend. Bei sehr starken Magnetfeldern wird die Supraleitung wie erwartet zerstört (bei diesem Material oberhalb von 12 Tesla). Forschende des Paul Scherrer Instituts haben nun gezeigt, dass bevor dies geschieht, bei starken Magnetfeldern ein neuer exotischer Zustand des Materials entsteht.

Bei diesem wird zusätzlich zur Supraleitung eine antiferromagnetische Ordnung beobachtet, d.h. die magnetischen Momente (die „Elementarmagnete“) im Material weisen in einer regelmässigen Weise teilweise in eine Richtung und teilweise in die entgegengesetzte. Symmetriebetrachtungen führen dabei zu dem Schluss, dass mit dieser magnetischen Ordnung ein neuartiger Quantenzustand verbunden sein muss, der jedoch nicht unmittelbar beobachtet werden konnte.

Zwei Arten Supraleitung gleichzeitig

Die PSI-Forscher haben die Eigenschaften dieser antiferromagnetischen Ordnung untersucht und geschlossen, dass dieser neuartige Quantenzustand aus einem zweiten, unabhängigen supraleitenden Zustand besteht. Supraleitung entsteht, wenn sich Elektronen in einem Material paarweise zu so genannten Cooper-Paaren zusammenfinden, die sich ungehindert durch das Material bewegen können. Aus der Perspektive der Cooper-Paare gibt es verschiedene Arten von Supraleitung, die sich insbesondere in den Symmetrieeigenschaften der Bewegung der Cooper-Paare unterscheiden. In dem hier untersuchten Material kommt zusätzlich zum schon vorhandenen supraleitenden Zustand noch ein zweiter hinzu. In Fachbegriffen ausgedrückt, hat man zunächst eine d-Wellen-Supraleitung, zu der in dem exotischen Zustand eine p-Wellen-Supraleitung hinzukommt.

Mit Neutronen nachgewiesen

Die antiferromagnetische Ordnung in dem Material ist durch Neutronenexperimente an der Neutronenquelle SINQ des PSI und am Institut Laue Langevin in Grenoble nachgewiesen worden. In solchen Experimenten schickt man einen Neutronenstrahl durch das untersuchte Material und beobachtet, in welche Richtungen besonders viele Neutronen abgelenkt werden. Daraus kann man dann auf regelmässige Strukturen im Inneren des Materials schliessen. In diesem Fall tauchte für hohe Magnetfelder eine weitere Richtung auf, in die viele Neutronen abgelenkt wurden, die der antiferromagnetischen Ordnung. Genau genommen hat man eine Spindichtewelle beobachtet. Das heisst, wenn man sich in eine bestimmte Richtung durch das Material bewegt, weisen die magnetischen Momente erst in eine Richtung, werden grösser, nehmen dann wieder ab, weisen dann in die entgegensetzte Richtung, werden da wieder grösser und nehmen wieder ab. Zeichnet man die Momente als Pfeile auf, lassen sich ihre Spitzen durch eine Wellenlinie verbinden.

Die Spindichtewellen können in diesem Material nur in zwei zueinander senkrechten Richtungen verlaufen, also in zwei verschiedenen Domänen auftreten. In welche Richtung die Spindichtewelle verläuft hängt von der Richtung des angelegten externen Magnetfelds ab. Ändert man die Richtung des Magnetfelds ändert sich für eine bestimmte Richtung abrupt auch die Verlaufsrichtung der Spindichtewelle. Um diesen Effekt nachzuweisen, haben die Forschenden einen speziellen Probenhalter gebaut, mit dem sich die Probe zwischen den Messungen um sehr kleine Winkel verkippen liess.

Quantenzustand gesteuert

„Das beobachtete Verhalten des Materials war total unerwartet, und kann nicht ein rein magnetischer Effekt sein“, erklärt Michel Kenzelmann, Leiter des Forschungsteams am PSI. „Dies ist ein deutlicher Hinweis darauf, dass in dem Material gemeinsam mit der Spindichtewelle auch der neue supraleitende Zustand entsteht, wie dies von Symmetriebetrachtungen auch erwartet wird.“ Das Besondere an diesem Zustand ist, dass er sehr eng mit der magnetischen Ordnung zusammenhängt: wo die magnetischen Momente der magnetischen Ordnung stark sind, ist auch die p-Wellen-Supraleitung besonders präsent, so dass beide stärker werden, wenn man das äussere Magnetfeld stärker macht. Man kann also mit einem externen Magnetfeld direkt den Quantenzustand steuern, der mit der Supraleitung verbunden ist. Die Möglichkeit, Quantenzustände direkt zu steuern ist für mögliche zukünftige Quantencomputer wichtig. „Auch wenn wegen der tiefen Temperaturen und starken Magnetfelder, die hier nötig sind, dieses konkrete Material wohl kaum zum Einsatz kommen wird, zeigen unsere Experimente, wie eine solche Steuerung grundsätzlich aussehen kann“, fügt Simon Gerber, Erstautor der Publikation, hinzu.

Text: Paul Piwnicki

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.
Kontakt:
Dr. Michel Kenzelmann, Labor für Entwicklung und Methoden, Paul Scherrer Institut, 5232 Villigen PSI, Schweiz

Telefon: +41 (0)56 310 5381 E-Mail: michel.kenzelmann@psi.ch

Originalveröffentlichung:
Switching of magnetic domains reveals spatially inhomogeneous superconductivity
Simon Gerber, Marek Bartkowiak, Jorge L. Gavilano, Eric Ressouche, Nikola
Egetenmeyer, Christof Niedermayer, Andrea D. Bianchi, Roman Movshovich, Eric D.
Bauer, Joe D. Thompson and Michel Kenzelmann
Nature Physics Advance Online Publication (AOP) 22. Dezember 2013;
doi: 10.1038/nphys2833; http://dx.doi.org/10.1038/nphys2833

Dagmar Baroke | idw
Weitere Informationen:
http://psi.ch/WY1e
http://www.psi.ch/ldm

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte