Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleiter, die von selbst arbeiten

03.12.2012
Physiker der Universitäten Tübingen, Tel Aviv und Kiel entdecken neue Möglichkeiten der Kryoelektronik

Wissenschaftler der Universitäten Tübingen, Tel Aviv und der Christian-Albrechts-Universität zu Kiel (CAU) haben erstmals eine neue Art von supraleitenden Elementen – sogenannte -Josephson-Kontakte – theoretisch und experimentell nachgewiesen.

„Supraleitende elektronische Schaltungen arbeiten mit den -Josephson-Kontakten praktisch ‚von selbst’ und kommen ohne komplizierte Steuerlogiken aus“, erläutert Dr. Edward Goldobin von der Universität Tübingen und leitender Wissenschaftler des Gemeinschaftsprojektes. Durch diese verbesserte Funktionalität stehen zum Beispiel in der medizinischen Bildgebung oder für skalierbare Quantencomputer ganz neue Möglichkeiten der Kryoelek-tronik – elektrischen Schaltungen bei ultrakalten Temperaturen – zur Verfügung. Auch neuartige Akkus, die sich nicht entladen, wären jetzt möglich. Ihre Ergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift „Physical Review Letters“.

Ein Josephson-Kontakt ist ein quantenmechanisches Bauteil, das aus zwei Supraleitern besteht, die durch eine sehr dünne Barriere von etwa 2 Nanometern (= millionstel Millimeter) getrennt werden. Entsprechend quantenmechanischer Grundsätze „fühlen“ die supraleitenden Elektronen ihre Nachbarn auf der anderen Barrierenseite und verhalten sich kohärent. Das heißt, die Elektronen schwingen auf beiden Seiten der Barriere gewissermaßen im Gleichtakt. Diese quantenmechanische Kohärenz, die über ein ganzes Bauelement oder auch über einen kompletten Mikrochip hinweg aufrecht erhalten werden kann, ermöglicht den Einsatz von Josephson-Kontakten zum Beispiel als präzise Sensoren von Magnetfeldern.
„Jetzt haben wir erstmals verstanden, wie konventionelle und -Kontakte – diese stellen eine ganz spezielle Phase mit dem Wert der Kreiszahl  zur Verfügung – so kombiniert werden können, dass man einen beliebigen Wert  erhalten kann. Und es ist uns gelungen, einen -Kontakt experimentell nachzuweisen“, berichtet Goldobin. Zudem haben die Wissenschaftler entdeckt, dass diese -Josephson-Kontakte sich in zwei Zuständen befinden können: die Supraleiter „synchronisieren“ mit der Phasenverschiebung von entweder + oder dem negativen dieses Werts.

In den Experimenten bei 300 Millikelvin (-273 °C) konnte die Existenz dieser beiden Zustände demonstriert werden. „Wir können experimentell bestimmen, in welchem Zustand der Kontakt ist und wir können ihn kontrollieren, also in den gewünschten Zustand von + oder - schalten. Der Wert der Phasenverschiebung  kann durch Parameter wie die Schichtdicke der Probe gesteuert werden“, so Goldobin.

Damit haben die Wissenschaftler eine wichtige Erkenntnis gewonnen. Denn vor den aktuellen Arbeiten galten Phasen, die ein Josephson-Kontakt ohne Stromfluss annehmen kann, als nicht beliebig änderbar. In einem herkömmlichen Josephson-Kontakt erfolgt die „Synchronisation“ der Elektronenbewegung nämlich gleichphasig, das heißt: ohne Phasenverschiebung.

„Die Nanotechnologie zur Herstellung des -Kontaktes resultiert aus der intensiven Forschung von über einem Jahrzehnt und ist derzeit weltweit einzigartig“, berichtet Dr. Martin Weides, der die nano-strukturierten Proben herstellte. „Das zentrale Element unserer Proben ist die Kontrolle der Schichtmorphologie auf atomarer Skala“, erläutert der Wissenschaftler das Besondere der vorgelegten Arbeit.

Zum wissenschaftlichen Hintergrund
Durch die Kombination der Eigenschaften von konventionellen und -Kontakten haben die Wissenschaftler aus Tübingen, Tel Aviv und Kiel Josephson-Kontakte mit einer beliebigen Phasenverschiebung  zwischen Elektronen in zwei Supraleitern entwickelt. Der Wert von  (0
Der -Kontakt wirkt als eine Batterie, die eine gegebene Phasenverschiebung  (statt einer Spannung wie in einer herkömmlichen Batterie) für eine angefügte supraleitende elektronische Schaltung erzeugt. „Dieser Phasen-Akku kann sich im Gegensatz zu den üblichen Batterien nicht entladen, da sie streuungsfrei und analog zum Fluss supraleitender Ströme wirkt“, erklärt Prof. Roman Mints von der Tel Aviv University.

Publikationen:
[1] E. Goldobin, D. Koelle, R. Kleiner, R.G.Mints, “Josephson junction with magnetic-field tunable ground state”, Phys. Rev. Lett. 107, 227001 (2011).
[2] H. Sickinger, A. Lipman, M. Weides, R. G. Mints, H. Kohlstedt, D. Koelle, R. Kleiner, E. Goldobin, "Experimental evidence of a φ Josephson junction", Phys. Rev. Lett. 109, 107002 (2012).

Kontakt:

Dr. Edward Goldobin
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Physikalisches Institut
Auf der Morgenstelle 14
72076 Tübingen
gold@uni-tuebingen.de

Prof. Dr. Hermann Kohlstedt
Christian-Albrechts-Universität zu Kiel
Technische Fakultät
Institut für Elektrotechnik und Informationstechnik
AG Nanoelektronik
Kaiserstraße 2, 24143 Kiel
hko@tf.uni-kiel.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie