Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleiter, die von selbst arbeiten

03.12.2012
Physiker der Universitäten Tübingen, Tel Aviv und Kiel entdecken neue Möglichkeiten der Kryoelektronik

Wissenschaftler der Universitäten Tübingen, Tel Aviv und der Christian-Albrechts-Universität zu Kiel (CAU) haben erstmals eine neue Art von supraleitenden Elementen – sogenannte -Josephson-Kontakte – theoretisch und experimentell nachgewiesen.

„Supraleitende elektronische Schaltungen arbeiten mit den -Josephson-Kontakten praktisch ‚von selbst’ und kommen ohne komplizierte Steuerlogiken aus“, erläutert Dr. Edward Goldobin von der Universität Tübingen und leitender Wissenschaftler des Gemeinschaftsprojektes. Durch diese verbesserte Funktionalität stehen zum Beispiel in der medizinischen Bildgebung oder für skalierbare Quantencomputer ganz neue Möglichkeiten der Kryoelek-tronik – elektrischen Schaltungen bei ultrakalten Temperaturen – zur Verfügung. Auch neuartige Akkus, die sich nicht entladen, wären jetzt möglich. Ihre Ergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift „Physical Review Letters“.

Ein Josephson-Kontakt ist ein quantenmechanisches Bauteil, das aus zwei Supraleitern besteht, die durch eine sehr dünne Barriere von etwa 2 Nanometern (= millionstel Millimeter) getrennt werden. Entsprechend quantenmechanischer Grundsätze „fühlen“ die supraleitenden Elektronen ihre Nachbarn auf der anderen Barrierenseite und verhalten sich kohärent. Das heißt, die Elektronen schwingen auf beiden Seiten der Barriere gewissermaßen im Gleichtakt. Diese quantenmechanische Kohärenz, die über ein ganzes Bauelement oder auch über einen kompletten Mikrochip hinweg aufrecht erhalten werden kann, ermöglicht den Einsatz von Josephson-Kontakten zum Beispiel als präzise Sensoren von Magnetfeldern.
„Jetzt haben wir erstmals verstanden, wie konventionelle und -Kontakte – diese stellen eine ganz spezielle Phase mit dem Wert der Kreiszahl  zur Verfügung – so kombiniert werden können, dass man einen beliebigen Wert  erhalten kann. Und es ist uns gelungen, einen -Kontakt experimentell nachzuweisen“, berichtet Goldobin. Zudem haben die Wissenschaftler entdeckt, dass diese -Josephson-Kontakte sich in zwei Zuständen befinden können: die Supraleiter „synchronisieren“ mit der Phasenverschiebung von entweder + oder dem negativen dieses Werts.

In den Experimenten bei 300 Millikelvin (-273 °C) konnte die Existenz dieser beiden Zustände demonstriert werden. „Wir können experimentell bestimmen, in welchem Zustand der Kontakt ist und wir können ihn kontrollieren, also in den gewünschten Zustand von + oder - schalten. Der Wert der Phasenverschiebung  kann durch Parameter wie die Schichtdicke der Probe gesteuert werden“, so Goldobin.

Damit haben die Wissenschaftler eine wichtige Erkenntnis gewonnen. Denn vor den aktuellen Arbeiten galten Phasen, die ein Josephson-Kontakt ohne Stromfluss annehmen kann, als nicht beliebig änderbar. In einem herkömmlichen Josephson-Kontakt erfolgt die „Synchronisation“ der Elektronenbewegung nämlich gleichphasig, das heißt: ohne Phasenverschiebung.

„Die Nanotechnologie zur Herstellung des -Kontaktes resultiert aus der intensiven Forschung von über einem Jahrzehnt und ist derzeit weltweit einzigartig“, berichtet Dr. Martin Weides, der die nano-strukturierten Proben herstellte. „Das zentrale Element unserer Proben ist die Kontrolle der Schichtmorphologie auf atomarer Skala“, erläutert der Wissenschaftler das Besondere der vorgelegten Arbeit.

Zum wissenschaftlichen Hintergrund
Durch die Kombination der Eigenschaften von konventionellen und -Kontakten haben die Wissenschaftler aus Tübingen, Tel Aviv und Kiel Josephson-Kontakte mit einer beliebigen Phasenverschiebung  zwischen Elektronen in zwei Supraleitern entwickelt. Der Wert von  (0
Der -Kontakt wirkt als eine Batterie, die eine gegebene Phasenverschiebung  (statt einer Spannung wie in einer herkömmlichen Batterie) für eine angefügte supraleitende elektronische Schaltung erzeugt. „Dieser Phasen-Akku kann sich im Gegensatz zu den üblichen Batterien nicht entladen, da sie streuungsfrei und analog zum Fluss supraleitender Ströme wirkt“, erklärt Prof. Roman Mints von der Tel Aviv University.

Publikationen:
[1] E. Goldobin, D. Koelle, R. Kleiner, R.G.Mints, “Josephson junction with magnetic-field tunable ground state”, Phys. Rev. Lett. 107, 227001 (2011).
[2] H. Sickinger, A. Lipman, M. Weides, R. G. Mints, H. Kohlstedt, D. Koelle, R. Kleiner, E. Goldobin, "Experimental evidence of a φ Josephson junction", Phys. Rev. Lett. 109, 107002 (2012).

Kontakt:

Dr. Edward Goldobin
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Physikalisches Institut
Auf der Morgenstelle 14
72076 Tübingen
gold@uni-tuebingen.de

Prof. Dr. Hermann Kohlstedt
Christian-Albrechts-Universität zu Kiel
Technische Fakultät
Institut für Elektrotechnik und Informationstechnik
AG Nanoelektronik
Kaiserstraße 2, 24143 Kiel
hko@tf.uni-kiel.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Hauch von Galaxien im Zentrum eines gigantischen Galaxienhaufens
21.08.2017 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik