Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleiter, die von selbst arbeiten

03.12.2012
Physiker der Universitäten Tübingen, Tel Aviv und Kiel entdecken neue Möglichkeiten der Kryoelektronik

Wissenschaftler der Universitäten Tübingen, Tel Aviv und der Christian-Albrechts-Universität zu Kiel (CAU) haben erstmals eine neue Art von supraleitenden Elementen – sogenannte -Josephson-Kontakte – theoretisch und experimentell nachgewiesen.

„Supraleitende elektronische Schaltungen arbeiten mit den -Josephson-Kontakten praktisch ‚von selbst’ und kommen ohne komplizierte Steuerlogiken aus“, erläutert Dr. Edward Goldobin von der Universität Tübingen und leitender Wissenschaftler des Gemeinschaftsprojektes. Durch diese verbesserte Funktionalität stehen zum Beispiel in der medizinischen Bildgebung oder für skalierbare Quantencomputer ganz neue Möglichkeiten der Kryoelek-tronik – elektrischen Schaltungen bei ultrakalten Temperaturen – zur Verfügung. Auch neuartige Akkus, die sich nicht entladen, wären jetzt möglich. Ihre Ergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift „Physical Review Letters“.

Ein Josephson-Kontakt ist ein quantenmechanisches Bauteil, das aus zwei Supraleitern besteht, die durch eine sehr dünne Barriere von etwa 2 Nanometern (= millionstel Millimeter) getrennt werden. Entsprechend quantenmechanischer Grundsätze „fühlen“ die supraleitenden Elektronen ihre Nachbarn auf der anderen Barrierenseite und verhalten sich kohärent. Das heißt, die Elektronen schwingen auf beiden Seiten der Barriere gewissermaßen im Gleichtakt. Diese quantenmechanische Kohärenz, die über ein ganzes Bauelement oder auch über einen kompletten Mikrochip hinweg aufrecht erhalten werden kann, ermöglicht den Einsatz von Josephson-Kontakten zum Beispiel als präzise Sensoren von Magnetfeldern.
„Jetzt haben wir erstmals verstanden, wie konventionelle und -Kontakte – diese stellen eine ganz spezielle Phase mit dem Wert der Kreiszahl  zur Verfügung – so kombiniert werden können, dass man einen beliebigen Wert  erhalten kann. Und es ist uns gelungen, einen -Kontakt experimentell nachzuweisen“, berichtet Goldobin. Zudem haben die Wissenschaftler entdeckt, dass diese -Josephson-Kontakte sich in zwei Zuständen befinden können: die Supraleiter „synchronisieren“ mit der Phasenverschiebung von entweder + oder dem negativen dieses Werts.

In den Experimenten bei 300 Millikelvin (-273 °C) konnte die Existenz dieser beiden Zustände demonstriert werden. „Wir können experimentell bestimmen, in welchem Zustand der Kontakt ist und wir können ihn kontrollieren, also in den gewünschten Zustand von + oder - schalten. Der Wert der Phasenverschiebung  kann durch Parameter wie die Schichtdicke der Probe gesteuert werden“, so Goldobin.

Damit haben die Wissenschaftler eine wichtige Erkenntnis gewonnen. Denn vor den aktuellen Arbeiten galten Phasen, die ein Josephson-Kontakt ohne Stromfluss annehmen kann, als nicht beliebig änderbar. In einem herkömmlichen Josephson-Kontakt erfolgt die „Synchronisation“ der Elektronenbewegung nämlich gleichphasig, das heißt: ohne Phasenverschiebung.

„Die Nanotechnologie zur Herstellung des -Kontaktes resultiert aus der intensiven Forschung von über einem Jahrzehnt und ist derzeit weltweit einzigartig“, berichtet Dr. Martin Weides, der die nano-strukturierten Proben herstellte. „Das zentrale Element unserer Proben ist die Kontrolle der Schichtmorphologie auf atomarer Skala“, erläutert der Wissenschaftler das Besondere der vorgelegten Arbeit.

Zum wissenschaftlichen Hintergrund
Durch die Kombination der Eigenschaften von konventionellen und -Kontakten haben die Wissenschaftler aus Tübingen, Tel Aviv und Kiel Josephson-Kontakte mit einer beliebigen Phasenverschiebung  zwischen Elektronen in zwei Supraleitern entwickelt. Der Wert von  (0
Der -Kontakt wirkt als eine Batterie, die eine gegebene Phasenverschiebung  (statt einer Spannung wie in einer herkömmlichen Batterie) für eine angefügte supraleitende elektronische Schaltung erzeugt. „Dieser Phasen-Akku kann sich im Gegensatz zu den üblichen Batterien nicht entladen, da sie streuungsfrei und analog zum Fluss supraleitender Ströme wirkt“, erklärt Prof. Roman Mints von der Tel Aviv University.

Publikationen:
[1] E. Goldobin, D. Koelle, R. Kleiner, R.G.Mints, “Josephson junction with magnetic-field tunable ground state”, Phys. Rev. Lett. 107, 227001 (2011).
[2] H. Sickinger, A. Lipman, M. Weides, R. G. Mints, H. Kohlstedt, D. Koelle, R. Kleiner, E. Goldobin, "Experimental evidence of a φ Josephson junction", Phys. Rev. Lett. 109, 107002 (2012).

Kontakt:

Dr. Edward Goldobin
Universität Tübingen
Mathematisch-Naturwissenschaftliche Fakultät
Physikalisches Institut
Auf der Morgenstelle 14
72076 Tübingen
gold@uni-tuebingen.de

Prof. Dr. Hermann Kohlstedt
Christian-Albrechts-Universität zu Kiel
Technische Fakultät
Institut für Elektrotechnik und Informationstechnik
AG Nanoelektronik
Kaiserstraße 2, 24143 Kiel
hko@tf.uni-kiel.de

Michael Seifert | idw
Weitere Informationen:
http://www.uni-tuebingen.de
http://www.uni-kiel.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
20.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics