Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Suche nach Dunkler Materie mit neuer Methode

21.08.2015

Dunkle-Materie-Teilchen sollten mit Atomkernen wechselwirken – so gängige Theorien. Während die Suche vieler Experimente danach bisher erfolglos blieb, behauptet die DAMA/LIBRA-Kollaboration, ein Signal von Dunkler Materie entdeckt zu haben. Die Wissenschaftler der XENON-Kollaboration haben nun in ihren Daten nach Wechselwirkungen der Dunklen Materie mit Elektronen der Atomhülle gesucht. Die Auswertung ergab kein Signal über dem sehr niedrigen Hintergrundrauschen. Damit ist eine Erklärung des Widerspruchs durch Modelle hinfällig, die eine Wechselwirkung der Dunklen Materie nur mit Elektronen annehmen. [Science, 21.08.2015; Physical Review Letters, angenommen]

Schwach wechselwirkende schwere Teilchen, WIMPs genannt, sind aus theoretischer Sicht die wohl bevorzugten Kandidaten für Dunkle Materie. In Experimenten sollten sie sich gelegentlich durch Stöße mit Atomkernen des Detektormaterials bemerkbar machen. „Unser XENON100-Detektor gehört zu den weltweit empfindlichsten, trotzdem haben wir damit keine Dunkle Materie gefunden“, sagt Uwe Oberlack von der Universität Mainz.


Der innere Teil des XENON100 Detektors, rechts die Lichtsensoren.

Fotos: XENON-Kollaboration


Vergleich der XENON100-Daten (blau) mit DAMA/LIBRA: Die rote Kurve zeigt, wie das DAMA/LIBRA-Energie-Spektrum der jahreszeitlichen Modulation von XENON100 gesehen würde.

Grafik: XENON-Kollaboration

Die Bewegung der Erde um die Sonne, die sich auf ihrer Bahn um das Zentrum der Milchstraße durch deren Dunkle-Materie-Halo bewegt, sollte weiterhin zu einer jahreszeitlichen Modulation des Signals führen: Im Sommer werden mehr, im Winter weniger Ereignisse erwartet. Das DAMA/LIBRA-Experiment hat mit seinem Natriumiodid-Detektor zwar eine solche Modulation über einen Zeitraum von 14 Jahren gemessen, diese als WIMP-Signal zu interpretieren steht aber im Widerspruch zu den Ergebnissen mehrerer anderer Experimente.

Weil DAMA/LIBRA nicht zwischen Streuungen am Atomkern oder den Elektronen der Atomhülle unterscheiden kann, wären leichtere Teilchen, die nur an Elektronen streuen, eine mögliche Erklärung aller Daten. Deshalb haben die Wissenschaftler der XENON-Kollaboration jetzt mit neuen Analysemethoden in ihren Daten nach Hinweisen darauf gesucht und ihre Ergebnisse in zwei Arbeiten publiziert. Der XENON100-Detektor (siehe Bild 1) nutzt als Nachweismedium 62 kg flüssiges Xenon und misst die winzigen Ladungs- und Lichtsignale, die bei den seltenen Kollisionen von Dunkle-Materie-Teilchen mit Xenon-Atomen erwartet werden.

Im Gegensatz zu DAMA/LIBRA kann XENON100 zwischen Streuung an Atomkernen und an Elektronen gut unterscheiden. Untergebracht ist das Experiment im italienischen Gran-Sasso-Untergrundlabor (LNGS), wo 1400 m Fels die störende kosmische Strahlung abschirmen. Um falsche Signale aufgrund der natürlichen Radioaktivität in der Umgebung des Detektors auszuschließen, wird der Detektor durch Schichten von Xenon, Kupfer, Polyethylen, Blei und Wasser abgeschirmt. Dadurch ist die Rate störender Hintergrundsignale mehr als 100 Mal niedriger als bei DAMA/LIBRA und sogar geringer als die dort beobachtete Amplitude der jahreszeitlichen Modulation.

Nichtsdestotrotz hat die XENON-Kollaboration ihre Daten zur Streuung an Elektronen der Atomhülle auch auf zeitliche Variationen hin untersucht. Entscheidend war dabei, dass der Detektor selbst während der gesamten Messzeit stabil betrieben wurde. Dies konnte für einen Xenon-Detektor nun zum ersten Mal überhaupt gezeigt werden. „Die Suche nach möglichen zeitlichen Variationen ergab keine signifikante Modulation über Zeiträume von bis zu 500 Tagen – im Widerspruch zur Beobachtung von DAMA/LIBRA“, fasst Christian Weinheimer von der Universität Münster das Ergebnis der neuen Analyse zusammen.

Die XENON-Forscher haben zudem unter verschiedenen Annahmen berechnet, wie das Signal von DAMA/LIBRA in ihrem Detektor aussehen würde, wenn es von an Elektronen gestreuten Dunkle-Materie-Teilchen verursacht worden wäre. Der Vergleich dieser Erwartung mit den XENON100-Daten aus einem Zeitraum von 70 Tagen rund um das Maximum der jahreszeitlichen Modulation ist eindeutig: Kein Signal, sondern nur der erwartete Hintergrund (siehe Bild 2). Die berechnete Obergrenze für die Wahrscheinlichkeit einer solchen Wechselwirkung ist so niedrig, dass das DAMA/LIBRA-Signal komplett ausgeschlossen werden kann.

„Somit hält keines der untersuchten Modelle, das die DAMA/LIBRA-Daten in Übereinstimmung mit den Ergebnissen anderer Experimente bringen könnte, der neuen Überprüfung durch das XENON100-Experiment stand“, resümiert Manfred Lindner vom KPI für Kernphysik, „Folglich lässt sich das DAMA/LIBRA-Ergebnis auch nicht mit Dunkler Materie erklären, die nur an Elektronen streut.“

Da der XENON100 Detektor an der Grenze seiner Sensitivität angekommen ist, installiert die Kollaboration im Moment einen 100 Mal empfindlicheren Detektor. Dieses Instrument, XENON1T, wird Ende des Jahres ein komplett neues Kapitel bei der Suche nach Dunker Materie aufschlagen.


An der internationalen XENON-Kollaboration sind aus Deutschland das Max-Planck-Institut für Kernphysik (MPIK) in Heidelberg, die Johannes Gutenberg-Universität Mainz und die Westfälische Wilhelms-Universität Münster beteiligt. Alle Institute engagieren sich bei der Datennahme und -analyse. Das MPIK ist in XENON100 zusätzlich verantwortlich für die Vermessung und Unterdrückung des extrem niedrigen radioaktiven Hintergrunds im Xenon-Gas mit sehr empfindlichen Geräten. Bei XENON1T liegen Auswahl und Kontrolle von Detektormaterialien mit extrem niedriger Radioaktivität, Entwicklung und Test der Lichtsensoren sowie das Xenon-Target im Verantwortungsbereich des MPIK. Die Gruppe an der Universität Mainz war für XENON100 u.a. für die Elektroden des inneren Detektors verantwortlich sowie am Datenauslesesystem maßgeblich beteiligt. Für XENON1T liegt ihre Verantwortlichkeit beim Myon-Detektor. Die Gruppe ist ferner am innovativen Xenon-Lagersystem ReStoX sowie am inneren Detektor beteiligt. Die Forscher der Universität Münster sind an beiden XENON-Detektoren engagiert und liefern wichtige Beiträge zur Kalibration. Für das kommende XENON1T-Experiment ist die Münsteraner Gruppe für die Reinheit des Xenons verantwortlich und hat den Reinigungskreislauf und eine einzigartige kryogene Destillationsanlage entwickelt.

Originalpublikationen:

Exclusion of Leptophilic Dark Matter Models using XENON100 Electronic Recoil Data
XENON Collaboration, arXiv:1507.07747 [astro-ph.CO] http://arxiv.org/abs/1507.07747 (28.07.2015), Science (21.08.2015)

Search for Event Rate Modulation in XENON100 Electronic Recoil Data
XENON Collaboration, arXiv:1507.07748 [astro-ph.CO] http://arxiv.org/abs/1507.07748 (28.07.2015), Phys. Rev. Lett. (angenommen)

Kontakt:

Prof. Dr. Manfred Lindner
Max Planck Institut für Kernphysik
Saupfercheckweg 1
69117 Heidelberg
Tel.: 06221 516800
Email: manfred.lindner@mpi-hd.mpg.de
http://www.mpi-hd.mpg.de/lin/

Prof. Uwe Oberlack
Institut für Physik
Johannes Gutenberg-Universität
Staudinger Weg 7
D-55099 Mainz
Tel.: 06131 3925167
Email: oberlack@uni-mainz.de
http://xenon.physik.uni-mainz.de/

Prof. Dr. Christian Weinheimer
Institut für Kernphysik
Wilhelm-Klemm-Straße 9
D-48149 Münster
Tel.: 0251 8334971
Email: weinheimer@uni-muenster.de
http://www.uni-muenster.de/Physik.KP/AGWeinheimer/

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen

25.04.2017 | HANNOVER MESSE

RWI/ISL-Containerumschlag-Index: Kräftiger Anstieg setzt sich fort

25.04.2017 | Wirtschaft Finanzen

Pharmacoscopy: Mikroskopie der nächsten Generation

25.04.2017 | Medizintechnik