Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stuttgarter Physiker entwickeln neuartige nano-optische Struktur zur Brechung der Zeitumkehr

25.03.2013
Hauchdünne Goldstrukturen statt große Faraday-Isolatoren

Forscher der Universität Stuttgart haben eine neuartige Nanostruktur entwickelt, die das physikalische Phänomen der Zeitumkehr bricht. Dr. Jessie Chin und Prof. Harald Giessen vom 4. Physikalischen Institut stellten ihre Ergebnisse, die auf elegante Art den sogenannten Faraday-Effekt vergrößert, in der Fachzeitschrift „Nature Communications“ vor.*)


Aufbau und Geometrie des Dünnfilm-Faradayrotators. Die Magnetfeldspulen sind um die Probe herum angeordnet. Der rote Pfeil stellt das Magnetfeld dar. Erkennbar sind Gold-Nanodrähte in Gelb und die magneto-optische Dünnfilmschicht in Rot. Die elektromagnetische Lichtwelle ist in blau gezeigt. Bild: Universität Stuttgart

Die Struktur, die Gold-Nanomaterialien mit magneto-optischen Dünnschichten kombiniert, könnte einmal in optischen Glasfaser-Kommunikationsnetzen eingesetzt werden oder auch neuartige großflächige optische Beschichtungen ermöglichen.

Wenn sich Licht als elektromagnetische Welle in Materie ausbreitet, schwingt sein elektrisches Feld in einer ganz bestimmten Polarisationsrichtung. Michael Faraday entdeckte 1845, dass Materialien wie Glas oder bestimmte Kristalle diese Richtung drehen können, wenn man von außen ein starkes Magnetfeld entlang der Lichtausbreitungsrichtung anlegt. Je größer das Magnetfeld, desto stärker wird die Polarisationsrichtung gedreht ˗̶ über eine Strecke von mehreren Zentimetern um bis zu 45 Grad. Dieser Effekt wird noch einmal verdoppelt, wenn man hinter dem Kristall einen Spiegel aufstellt, der das Licht durch den Kristall wieder zurücksendet.

Man kann auf diese Art eine Polarisationsdrehung um 90 Grad erreichen und mit einem Polarisationsfilter das reflektierte Licht herausfiltern. Dies nennt man dann optische Isolation. Der Effekt hängt davon ab, in welche Richtung man sich durch den Kristall bewegt. Da ein Magnetfeld eine ausgezeichnete Richtung durch seinen Nordpol und seinen Südpol vorgibt, sagt man, der Effekt breche die Zeitumkehr. Man kann sich dabei vorstellen, dass Licht rückwärts läuft, wenn man die Zeitumkehr einschaltet.

Durch das äußere Magnetfeld kann das Licht aber genau die Richtung unterscheiden, in die es läuft. Dadurch wird die Polarisationsdrehung vorgegeben, unabhängig davon ob das Licht vor oder zurück läuft. Dies steht im Gegensatz zur Schulbuch-Physik zur „optischen Aktivität“ in einer Zuckerlösung, bei der das Licht nicht unterscheiden kann, in welche Richtung es läuft.

Nur 1/10.000 Millimeter groß
Die besten momentan vorhandenen Kristalle für die optische Isolation benötigen Magnetfelder mit einer Flussdichte von mehreren Tesla und sind einige Zentimeter dick. Der neue Stuttgarter Ansatz kombiniert dagegen hauchdünne Gold-Nanostrukturen und magneto-optische Materialien aus Yttrium-Eisen-Aluminiumoxid, wie sie in der Computertechnologie verwendet werden. Die Goldstrukturen, die nur 1/10.000 Millimeter groß sind, konzentrieren dabei das Licht in dem ähnlich dünnen magneto-optischen Film. Dadurch konnten Chin und Giessen die gesamte Struktur auf den Bruchteil eines Millimeters reduzieren und Drehungen im Bereich von einem Grad erreichen. Das magneto-optische Material wurde von Spezialisten der Universität Augsburg aus der Gruppe von Prof. Bernd Stritzker mittels Laserstrahlverdampfen hergestellt.

Dr. Jessie Chin sieht Anwendungsmöglichkeiten vor allem im Bereich der optischen Datenkommunikation für Glasfasern, wo die bisherigen großen Faraday-Isolatoren ein wesentlicher Kostenfaktor sind. Aber auch großflächige Beschichtungen wären möglich, zum Beispiel auf Linsen. Das wäre eine ganz neue Art, um Reflexe in optischen Systemen zu eliminieren. Um einen industrietauglichen Dünnfilm-Faraday-Isolator zu verwirklichen, besteht allerdings noch Forschungs- und Entwicklungsbedarf“, so Prof. Harald Giessen. Optimierungsmöglichkeiten bestehen bei den Materialien und beim geschickten Design der Nanogeometrie.

*) Referenz: J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin film Faraday rotation”,Nature Communications 4, 1599 (2013). http://www.nature.com/ncomms/journal/v4/n3/full/ncomms2609.html

Kontakt: Prof. Harald Giessen, Universität Stuttgart, 4. Physikalisches Institut, Tel. 0711/685-65111, E-Mail: Giessen (at) physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de
http://www.nature.com/ncomms/journal/v4/n3/full/ncomms2609.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie