Stuttgarter Physiker entwickeln neuartige nano-optische Struktur zur Brechung der Zeitumkehr

Aufbau und Geometrie des Dünnfilm-Faradayrotators. Die Magnetfeldspulen sind um die Probe herum angeordnet. Der rote Pfeil stellt das Magnetfeld dar. Erkennbar sind Gold-Nanodrähte in Gelb und die magneto-optische Dünnfilmschicht in Rot. Die elektromagnetische Lichtwelle ist in blau gezeigt. Bild: Universität Stuttgart<br>

Forscher der Universität Stuttgart haben eine neuartige Nanostruktur entwickelt, die das physikalische Phänomen der Zeitumkehr bricht. Dr. Jessie Chin und Prof. Harald Giessen vom 4. Physikalischen Institut stellten ihre Ergebnisse, die auf elegante Art den sogenannten Faraday-Effekt vergrößert, in der Fachzeitschrift „Nature Communications“ vor.*)

Die Struktur, die Gold-Nanomaterialien mit magneto-optischen Dünnschichten kombiniert, könnte einmal in optischen Glasfaser-Kommunikationsnetzen eingesetzt werden oder auch neuartige großflächige optische Beschichtungen ermöglichen.

Wenn sich Licht als elektromagnetische Welle in Materie ausbreitet, schwingt sein elektrisches Feld in einer ganz bestimmten Polarisationsrichtung. Michael Faraday entdeckte 1845, dass Materialien wie Glas oder bestimmte Kristalle diese Richtung drehen können, wenn man von außen ein starkes Magnetfeld entlang der Lichtausbreitungsrichtung anlegt. Je größer das Magnetfeld, desto stärker wird die Polarisationsrichtung gedreht ˗̶ über eine Strecke von mehreren Zentimetern um bis zu 45 Grad. Dieser Effekt wird noch einmal verdoppelt, wenn man hinter dem Kristall einen Spiegel aufstellt, der das Licht durch den Kristall wieder zurücksendet.

Man kann auf diese Art eine Polarisationsdrehung um 90 Grad erreichen und mit einem Polarisationsfilter das reflektierte Licht herausfiltern. Dies nennt man dann optische Isolation. Der Effekt hängt davon ab, in welche Richtung man sich durch den Kristall bewegt. Da ein Magnetfeld eine ausgezeichnete Richtung durch seinen Nordpol und seinen Südpol vorgibt, sagt man, der Effekt breche die Zeitumkehr. Man kann sich dabei vorstellen, dass Licht rückwärts läuft, wenn man die Zeitumkehr einschaltet.

Durch das äußere Magnetfeld kann das Licht aber genau die Richtung unterscheiden, in die es läuft. Dadurch wird die Polarisationsdrehung vorgegeben, unabhängig davon ob das Licht vor oder zurück läuft. Dies steht im Gegensatz zur Schulbuch-Physik zur „optischen Aktivität“ in einer Zuckerlösung, bei der das Licht nicht unterscheiden kann, in welche Richtung es läuft.

Nur 1/10.000 Millimeter groß
Die besten momentan vorhandenen Kristalle für die optische Isolation benötigen Magnetfelder mit einer Flussdichte von mehreren Tesla und sind einige Zentimeter dick. Der neue Stuttgarter Ansatz kombiniert dagegen hauchdünne Gold-Nanostrukturen und magneto-optische Materialien aus Yttrium-Eisen-Aluminiumoxid, wie sie in der Computertechnologie verwendet werden. Die Goldstrukturen, die nur 1/10.000 Millimeter groß sind, konzentrieren dabei das Licht in dem ähnlich dünnen magneto-optischen Film. Dadurch konnten Chin und Giessen die gesamte Struktur auf den Bruchteil eines Millimeters reduzieren und Drehungen im Bereich von einem Grad erreichen. Das magneto-optische Material wurde von Spezialisten der Universität Augsburg aus der Gruppe von Prof. Bernd Stritzker mittels Laserstrahlverdampfen hergestellt.

Dr. Jessie Chin sieht Anwendungsmöglichkeiten vor allem im Bereich der optischen Datenkommunikation für Glasfasern, wo die bisherigen großen Faraday-Isolatoren ein wesentlicher Kostenfaktor sind. Aber auch großflächige Beschichtungen wären möglich, zum Beispiel auf Linsen. Das wäre eine ganz neue Art, um Reflexe in optischen Systemen zu eliminieren. Um einen industrietauglichen Dünnfilm-Faraday-Isolator zu verwirklichen, besteht allerdings noch Forschungs- und Entwicklungsbedarf“, so Prof. Harald Giessen. Optimierungsmöglichkeiten bestehen bei den Materialien und beim geschickten Design der Nanogeometrie.

*) Referenz: J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin film Faraday rotation”,Nature Communications 4, 1599 (2013). http://www.nature.com/ncomms/journal/v4/n3/full/ncomms2609.html

Kontakt: Prof. Harald Giessen, Universität Stuttgart, 4. Physikalisches Institut, Tel. 0711/685-65111, E-Mail: Giessen (at) physik.uni-stuttgart.de

Media Contact

Andrea Mayer-Grenu idw

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer