Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stuttgarter Physiker entwickeln neuartige nano-optische Struktur zur Brechung der Zeitumkehr

25.03.2013
Hauchdünne Goldstrukturen statt große Faraday-Isolatoren

Forscher der Universität Stuttgart haben eine neuartige Nanostruktur entwickelt, die das physikalische Phänomen der Zeitumkehr bricht. Dr. Jessie Chin und Prof. Harald Giessen vom 4. Physikalischen Institut stellten ihre Ergebnisse, die auf elegante Art den sogenannten Faraday-Effekt vergrößert, in der Fachzeitschrift „Nature Communications“ vor.*)


Aufbau und Geometrie des Dünnfilm-Faradayrotators. Die Magnetfeldspulen sind um die Probe herum angeordnet. Der rote Pfeil stellt das Magnetfeld dar. Erkennbar sind Gold-Nanodrähte in Gelb und die magneto-optische Dünnfilmschicht in Rot. Die elektromagnetische Lichtwelle ist in blau gezeigt. Bild: Universität Stuttgart

Die Struktur, die Gold-Nanomaterialien mit magneto-optischen Dünnschichten kombiniert, könnte einmal in optischen Glasfaser-Kommunikationsnetzen eingesetzt werden oder auch neuartige großflächige optische Beschichtungen ermöglichen.

Wenn sich Licht als elektromagnetische Welle in Materie ausbreitet, schwingt sein elektrisches Feld in einer ganz bestimmten Polarisationsrichtung. Michael Faraday entdeckte 1845, dass Materialien wie Glas oder bestimmte Kristalle diese Richtung drehen können, wenn man von außen ein starkes Magnetfeld entlang der Lichtausbreitungsrichtung anlegt. Je größer das Magnetfeld, desto stärker wird die Polarisationsrichtung gedreht ˗̶ über eine Strecke von mehreren Zentimetern um bis zu 45 Grad. Dieser Effekt wird noch einmal verdoppelt, wenn man hinter dem Kristall einen Spiegel aufstellt, der das Licht durch den Kristall wieder zurücksendet.

Man kann auf diese Art eine Polarisationsdrehung um 90 Grad erreichen und mit einem Polarisationsfilter das reflektierte Licht herausfiltern. Dies nennt man dann optische Isolation. Der Effekt hängt davon ab, in welche Richtung man sich durch den Kristall bewegt. Da ein Magnetfeld eine ausgezeichnete Richtung durch seinen Nordpol und seinen Südpol vorgibt, sagt man, der Effekt breche die Zeitumkehr. Man kann sich dabei vorstellen, dass Licht rückwärts läuft, wenn man die Zeitumkehr einschaltet.

Durch das äußere Magnetfeld kann das Licht aber genau die Richtung unterscheiden, in die es läuft. Dadurch wird die Polarisationsdrehung vorgegeben, unabhängig davon ob das Licht vor oder zurück läuft. Dies steht im Gegensatz zur Schulbuch-Physik zur „optischen Aktivität“ in einer Zuckerlösung, bei der das Licht nicht unterscheiden kann, in welche Richtung es läuft.

Nur 1/10.000 Millimeter groß
Die besten momentan vorhandenen Kristalle für die optische Isolation benötigen Magnetfelder mit einer Flussdichte von mehreren Tesla und sind einige Zentimeter dick. Der neue Stuttgarter Ansatz kombiniert dagegen hauchdünne Gold-Nanostrukturen und magneto-optische Materialien aus Yttrium-Eisen-Aluminiumoxid, wie sie in der Computertechnologie verwendet werden. Die Goldstrukturen, die nur 1/10.000 Millimeter groß sind, konzentrieren dabei das Licht in dem ähnlich dünnen magneto-optischen Film. Dadurch konnten Chin und Giessen die gesamte Struktur auf den Bruchteil eines Millimeters reduzieren und Drehungen im Bereich von einem Grad erreichen. Das magneto-optische Material wurde von Spezialisten der Universität Augsburg aus der Gruppe von Prof. Bernd Stritzker mittels Laserstrahlverdampfen hergestellt.

Dr. Jessie Chin sieht Anwendungsmöglichkeiten vor allem im Bereich der optischen Datenkommunikation für Glasfasern, wo die bisherigen großen Faraday-Isolatoren ein wesentlicher Kostenfaktor sind. Aber auch großflächige Beschichtungen wären möglich, zum Beispiel auf Linsen. Das wäre eine ganz neue Art, um Reflexe in optischen Systemen zu eliminieren. Um einen industrietauglichen Dünnfilm-Faraday-Isolator zu verwirklichen, besteht allerdings noch Forschungs- und Entwicklungsbedarf“, so Prof. Harald Giessen. Optimierungsmöglichkeiten bestehen bei den Materialien und beim geschickten Design der Nanogeometrie.

*) Referenz: J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin film Faraday rotation”,Nature Communications 4, 1599 (2013). http://www.nature.com/ncomms/journal/v4/n3/full/ncomms2609.html

Kontakt: Prof. Harald Giessen, Universität Stuttgart, 4. Physikalisches Institut, Tel. 0711/685-65111, E-Mail: Giessen (at) physik.uni-stuttgart.de

Andrea Mayer-Grenu | idw
Weitere Informationen:
http://www.uni-stuttgart.de
http://www.nature.com/ncomms/journal/v4/n3/full/ncomms2609.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
20.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics