Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Was steckt hinter Einsteins Turbulenzen?

27.03.2013
Numerische Berechnungen von Wissenschaftlern des AEI geben erstmals Einblicke in die relativistischen Eigenschaften dieser mysteriösen Prozesse

Der amerikanische Physiknobelpreisträger Richard Feynman bezeichnete einmal die Turbulenzen als „eines der wichtigsten ungelösten Probleme der klassischen Physik“, weil keine grundlegende Theorie für ihre Beschreibung existiert. Bis heute gilt das als eines der sechs wichtigsten Probleme der Mathematik.


Diese Momentaufnahme der Simulation einer stimulierten Turbulenz in einem heißen Plasma zeigt die Energiedichte. In den hellen Regionen sind Energie und Temperatur jeweils am größten.
David Radice / Luciano Rezzolla (AEI)

David Radice und Luciano Rezzolla vom Potsdamer Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut / AEI) haben jetzt einen entscheidenden Beitrag zur Lösung des Problems geleistet: Mit einem neuen Computercode gelangen ihnen erstmals relativistische Berechnungen, die es erlauben, turbulente Prozesse im Umfeld astrophysikalischer Phänomene zu verstehen.

Turbulenzen sind weit verbreitet und spielen eine große Rolle in der Dynamik von Prozessen: Man begegnet ihnen im Alltag, wenn man zum Beispiel Milch in den Kaffee schüttet. Aber auch im Benzin-Luft-Gemisch von Verbrennungsmotoren oder im verdünnten heißen Plasma des intergalaktischen Mediums kommen sie vor.

Schon im 15. Jahrhundert untersuchte Leonardo da Vinci Turbulenzen in Wasserstrudeln. Im 19. Jahrhundert formulierten Claude Navier und George Stokes unabhängig voneinander Gleichungen, die Strömungen in Flüssigkeiten und Gasen beschreiben. Diese Navier-Stokes-Gleichungen bilden auch Turbulenzen ab. Darauf aufbauend, entwickelte der russische Mathematiker Andrey Kolmogorov während des Zweiten Weltkriegs die bis heute gültige statistische Theorie für Turbulenzen.

Eine fundamentale mathematische Theorie dafür fehlt jedoch bis heute. Die „Analyse von Existenz und Regularität von Lösungen der dreidimensionalen inkompressiblen Navier-Stokes-Gleichungen“ steht daher auf der Liste ungelöster mathematischer Probleme, für deren Lösung das Clay Mathematics Institute in Cambridge/Massachusetts im Jahr 2000 ein Preisgeld von einer Million US-Dollar ausgelobt hat.

„Mit unseren Berechnungen haben wir das Problem zwar nicht gelöst, aber wir zeigen, dass und wie die bisher gültige Theorie modifiziert werden muss. Damit kommen wir einer grundlegenden Theorie zur Beschreibung von Turbulenzen einen wichtigen Schritt näher“, sagt Luciano Rezzolla, der am AEI die Arbeitsgruppe Numerische Relativitätstheorie leitet, über seine Arbeit.

Rezzolla und sein Kollege David Radice untersuchten Turbulenzen in sehr starken Gravitationsfeldern, etwa in der Umgebung eines schwarzen Lochs oder bei extrem hohen Energien; in beiden Fällen bewegen sich Teilchen nahezu mit Lichtgeschwindigkeit. Die Forscher verwendeten ein virtuelles Labor, in dem sie diese Situationen unter Berücksichtigung relativistischer Effekte simulierten. Die entsprechenden nicht-linearen Differentialgleichungen der relativistischen Hydrodynamik wurden auf den Großrechnern des AEI und des Rechenzentrums in Garching gelöst.

„Unsere Untersuchungen zeigen, dass Kolmogorovs Gesetz für relativistische Phänomene modifiziert werden muss, denn wir beobachten Abweichungen und neue Effekte“, sagt Rezzolla. „Interessanterweise scheint jedoch die wichtigste Aussage des Gesetzes Gültigkeit zu behalten.“ Dieses sogenannte -5/3 Kolmogorov-Gesetz beschreibt, wie die Energie eines Systems von großen auf kleine Wirbel übertragen wird.

Mit ihrer Arbeit wollen die Wissenschaftler auch dabei helfen, ein übergreifendes Modell zu formulieren. „Den ersten Schritt haben wir nun getan“, so Luciano Rezzolla, „wir werden die Computercodes verbessern, um weitere Erkenntnisse zu einer grundlegenden Theorie der Turbulenzen zu gewinnen.“

Originalpublikation:
Radice, D., Rezzolla, L.,
Universality and Intermittency in Relativistic Turbulent Flows of a Hot Plasma
The Astrophysical Journal Letters, 766:L10., 20. März 2013

Ansprechpartner:
Dr. Elke Müller
Öffentlichkeitsarbeit
Max-Planck-Institut für Gravitationsphysik, Potsdam-Golm
Telefon: +49 331 567-7303
E-Mail: elke.mueller@­aei.mpg.de

Dr. Luciano Rezzolla
Max-Planck-Institut für Gravitationsphysik
Telefon: +49 331 567-7246
E-Mail: luciano.rezzolla@­aei.mpg.de

Dr Harald Rösch | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.­aei.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik