Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Starker Halt - Unerwartete Wechselwirkung zwischen organischen Halbleitern

07.03.2012
Jülicher Physiker haben eine unerwartet starke Bindung zwischen organischen Schichten entdeckt. Solche Strukturen geben Wissenschaftlern weltweit noch viele Rätsel auf. Sie sind die Grundlage für neuartige elektronische Bauelemente aus organischen Halbleitern, die mittlerweile in immer mehr Smartphones und Fernsehgeräten verwendet werden. Die Ergebnisse werden in der renommierten Zeitschrift „Physical Review Letters“ veröffentlicht.

Organische Halbleiter lassen sich günstig herstellen, flexibel formen und sind äußeren Einflüssen gegenüber relativ unempfindlich. Im Prinzip könnten sie künftig sogar einfach auf Plastikfolien aufgedruckt werden. Als organische Leuchtdioden (OLEDs) werden sie bereits vielfach eingesetzt, vor allem in Smartphones, weil sie nur wenig Strom verbrauchen.


Rastertunnelmikroskop-Aufnahme bei -260 °C: eine dünne Schicht Kupfer-Phthalocyanin hat sich im oberen rechten Bildteil auf einem Gitter aus PTCDA angelagert. Die übereinstimmende Anordnung der verschiedenartigen Moleküle weist auf die starke Bindung zwischen den beiden Schichten hin.
Forschungszentrum Jülich

Trotzdem sind die elektronischen Eigenschaften dieser komplexen Materialien bisher noch größtenteils unbekannt. Von besonderem Interesse für die Forschung sind die Grenzflächen. Denn für die Leistung der Bauteile ist entscheidend, wie gut sich Kontakte mit anderen organischen und metallischen Leitern herstellen lassen. Je stärker die Verbindung, desto besser können Elektronen von einem Material auf das andere übergehen – und desto mehr Strom oder Licht liefern Solarzellen oder Leuchtdioden.

Solche starken Bindungen bilden organische Moleküle allerdings in der Regel nicht aus. „Bisher gingen Wissenschaftler davon aus, dass organische Materialien untereinander nur über schwache Van-der-Waals-Kräfte wechselwirken. Nur in Kontakt mit manchen Metallen, zeigen sie auch eine stärkere Anbindung, genannt Chemisorption“, berichtet Dr. Christian Kumpf vom Forschungszentrum Jülich. „Wir konnten jetzt erstmals eine solche Chemisorption zwischen zwei organischen Schichten nachweisen, die wir auf einen Silberkristall aufgedampft hatten.“ Solche sandwichartigen Strukturen befinden sich auch in OLEDs, die meist aus mehreren organischen Schichten zwischen zwei metallischen Leitern bestehen.

Für die Analyse verwendeten Kumpf und seine Kollegen PTCDA, ein organisches Halbleitermaterial sowie Kupfer-Phthalocyanin, das häufig als Farbstoff verwendet wird. Danach untersuchten sie die nur je eine Moleküllage dicken Schichten mit verschiedenen hochspezialisierten Messverfahren. Mit Ultravioletter Photoelektronen Spektroskopie (UPS) zeigten die Forscher, dass es zu einem elektronischen Ladungstransfer zwischen den organischen Halbleitern kommt. Mit Rastertunnelmikroskopie (STM) und Niederenergetischer Elektronenbeugung (LEED) stellten sie außerdem fest, dass sich in Folge der starken Bindung die Anordnung der Moleküle von einer Lage auf die nächste überträgt, also praktisch „durchpaust“.

Dass einige Metalle solche starken Wechselwirkungen mit einem organischen Halbleiter aufbauen können, ist schon länger bekannt. Kumpf selbst trug bereits mit seinen früheren Arbeiten zur Forschung auf diesem Gebiet bei, auch vor seinem Wechsel im Jahr 2008 nach Jülich zu Prof. Stefan Tautz.

„Dass der Ladungstransfer zwischen diesen organischen Materialien stattfindet, ist neu, das kam ziemlich unerwartet. Diese Erkenntnis wird später sicher noch in die Entwicklung neuer organischer Halbleiterbauteile einfließen“, schätzt der Direktor des Jülicher Peter Grünberg Instituts (PGI). Bis dahin ist es aber noch ein weiter Weg. Zu unterschiedlich sind die Herstellungsprozesse in der Industrie und die Anforderungen im Labor, bei denen es eher auf Wiederholbarkeit und Genauigkeit ankommt.

Originalveröffentlichung:
Benjamin Stadtmüller, Tomoki Sueyoshi, Georgy Kichin, Ingo Kröger, Sergey Soubatch, Ruslan Temirov, F. Stefan Tautz, and Christian Kumpf: Commensurate registry and chemisorption at a hetero-organic interface, Phys. Rev. Lett.
108, 106103 (2012)
DOI: 10.1103/PhysRevLett.108.106103
URL: http://link.aps.org/doi/10.1103/PhysRevLett.108.106103
Ansprechpartner:
Priv.-Doz. Dr. Christian Kumpf
Tel. 02461 61-1452
Email c.kumpf@fz-juelich.de
Pressekontakt:
Tobias Schlößer
Tel. 02461 61-4771
Email t.schloesser@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de/pgi/pgi-3/EN/UeberUns/Organisation/Gruppe1/gruppe1_node.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Hauch von Galaxien im Zentrum eines gigantischen Galaxienhaufens
21.08.2017 | Universität Heidelberg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten

21.08.2017 | Physik Astronomie

Ein Holodeck für Fliegen, Fische und Mäuse

21.08.2017 | Biowissenschaften Chemie

Institut für Lufttransportsysteme der TUHH nimmt neuen Cockpitsimulator in Betrieb

21.08.2017 | Verkehr Logistik