Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stärker als Stahl - Forscher spinnen ultrafeste Zellulosefäden bei DESYs Röntgenquelle PETRA III

02.06.2014

Ein schwedisch-deutsches Forscherteam hat bei DESY erfolgreich ein neues Verfahren zur Produktion extrem starker Zellulosefäden getestet. Die innovative Methode flechtet ultrafestes Garn aus nanometerkleinen Zellulose-Fasern, indem diese alle parallel ausgerichtet werden. Die Wissenschaftler präsentieren die Prozedur im Fachjournal "Nature Communications".

Zellulose ist der Hauptbestandteil der pflanzlichen Zellwand und formt dort winzigen Fädchen, die sogenannten Fibrillen. "Gemessen am Gewicht sind unsere Fäden stärker als Stahl und Aluminium", erläutert Hauptautor Prof. Fredrik Lundell vom Wallenberg-Holzwissenschaftszentrum an der Königlichen Technischen Hochschule KTH in Stockholm.


Künstlerische Darstellung der Zellulosefaden-Produktion: Die Nanofibrillen werden duch seitliche Wasserstrahlen beschleunigt, richten sich dadurch parallel aus und verhaken sich zu einem festen Faden

Illustration: DESY/Eberhard Reimann

"Die echte Herausforderung ist allerdings, daraus Biomaterialien mit hoher Steifigkeit zu machen, die beispielsweise für Rotorblätter von Windkrafträdern benutzt werden könnten. Mit weiteren Verbesserungen, insbesondere bei der Ausrichtung der Fibrillen, wird dies möglich werden."

Für ihr Verfahren spülen die Forscher die winzigen Zellulose-Fibrillen mit Wasser durch einen schmalen Kanal. Zwei zusätzliche Wasserstrahlen, die von beiden Seiten in den Kanal münden, beschleunigen den Fluss der Fibrillen.

"Durch die Beschleunigung mit diesen Jets richten sich alle Nanofibrillen mehr oder weniger parallel zur Flussrichtung aus", erläutert Ko-Autor Dr. Stephan Roth, Leiter der Experimentierstation P03 an DESYs Röntgenlichtquelle PETRA III, an der die Versuche stattfanden. "Außerdem spülen die Jets Salze in den Fluss. Diese Salze sorgen dafür, dass die Fibrillen sich aneinanderheften und legen damit bereits die Struktur des künftigen Fadens fest."

Anschließend werden die noch feuchten Fasern an der Luft getrocknet, wodurch sie zu einem kräftigen Faden zusammenschrumpfen. "Das Trocknen dauert nur ein paar Minuten an der Luft", erklärt Ko-Autor Dr. Daniel Söderberg von der KTH. "Das fertige Material ist vollständig biokompatibel, da die natürliche Struktur der Zellulose in den Fibrillen erhalten bleibt. Es ist daher biologisch abbaubar und sogar verträglich mit menschlichem Gewebe."

Das helle Röntgenlicht von PETRA III erlaubte den Forschern, den Produktionsprozess im Detail zu verfolgen und die Konfiguration der Nanofibrillen an verschiedenen Stellen im Fluss zu überprüfen. "Forschung wird heutzutage von interdisziplinärer Zusammenarbeit angetrieben", betont Söderberg. "Ohne die große Kompetenz und die Möglichkeiten, die das Team von DESYs Messstation P03 in das Projekt eingebracht hat, wäre dies nicht gelungen."

Wie die Forscher berichten, ist ihr Garn stärker als alle anderen bisher präsentierten künstlichen Fäden aus Zellulose-Nanofibrillen. Sie können sogar mit den stärksten natürlichen Zellstofffäden mithalten, die man bisher aus Holz extrahiert hat, und besitzen eine gleichhohe Parallelausrichtung der Nanofibrillen. "Wir können im Prinzip sehr lange Fäden flechten", betont Lundell. "Bis jetzt sind unsere längsten Probestücke ungefähr zehn Zentimeter lang, aber das ist mehr eine technische Frage und kein grundsätzliches Problem."

Die im Experiment eingesetzten Nanofibrillen stammten aus frischem Holz. "Im Prinzip sollte es auch möglich sein, Fibrillen zum Beispiel aus Altpapier zu extrahieren", sagt Lundell. "Das Potenzial von Recyclingmaterial für diese Technik muss allerdings erst genauer untersucht werden."

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung
“Hydrodynamic alignment and assembly of nano-fibrils resulting in strong cellulose filaments”; Karl M. O. Håkansson, Andreas B. Fall, Fredrik Lundell, Shun Yu, Christina Krywka, Stephan V. Roth, Gonzalo Santoro, Mathias Kvick, Lisa Prahl Wittberg, Lars Wågberg & L. Daniel Söderberg; "Nature Communications", 2014; DOI: 10.1038/ncomms5018

Wissenschaftliche Ansprechpartner
Prof. Fredrik Lundell; Wallenberg Wood Science Center, KTH Mechanics, Stockholm; +46 708 35 64 45; fredrik@mech.kth.se
Dr. Stephan Roth; DESY Photon Science; +49 40 8998-2934; stephan.roth@desy.de

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.desy.de/

Weitere Berichte zu: DESY Elektronen-Synchrotron Fibrillen Fluss Forschung Fäden Holz Kanal Luft Nanofibrillen PETRA Röntgenquelle Salze Stahl Zellulose

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Tauchgang in einen Magneten
20.07.2017 | Paul Scherrer Institut (PSI)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: Das Proton präzise gewogen

Wie schwer ist ein Proton? Auf dem Weg zur möglichst exakten Kenntnis dieser fundamentalen Konstanten ist jetzt Wissenschaftlern aus Deutschland und Japan ein wichtiger Schritt gelungen. Mit Präzisionsmessungen an einem einzelnen Proton konnten sie nicht nur die Genauigkeit um einen Faktor drei verbessern, sondern auch den bisherigen Wert korrigieren.

Die Masse eines einzelnen Protons noch genauer zu bestimmen – das machen die Physiker um Klaus Blaum und Sven Sturm vom Max-Planck-Institut für Kernphysik in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

Technologietag der Fraunhofer-Allianz Big Data: Know-how für die Industrie 4.0

18.07.2017 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - September 2017

17.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

1,4 Millionen Euro für Forschungsprojekte im Industrie 4.0-Kontext

20.07.2017 | Förderungen Preise

Von photonischen Nanoantennen zu besseren Spielekonsolen

20.07.2017 | Physik Astronomie

Bildgebung von entstehendem Narbengewebe

20.07.2017 | Biowissenschaften Chemie