Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Stärker als Stahl - Forscher spinnen ultrafeste Zellulosefäden bei DESYs Röntgenquelle PETRA III

02.06.2014

Ein schwedisch-deutsches Forscherteam hat bei DESY erfolgreich ein neues Verfahren zur Produktion extrem starker Zellulosefäden getestet. Die innovative Methode flechtet ultrafestes Garn aus nanometerkleinen Zellulose-Fasern, indem diese alle parallel ausgerichtet werden. Die Wissenschaftler präsentieren die Prozedur im Fachjournal "Nature Communications".

Zellulose ist der Hauptbestandteil der pflanzlichen Zellwand und formt dort winzigen Fädchen, die sogenannten Fibrillen. "Gemessen am Gewicht sind unsere Fäden stärker als Stahl und Aluminium", erläutert Hauptautor Prof. Fredrik Lundell vom Wallenberg-Holzwissenschaftszentrum an der Königlichen Technischen Hochschule KTH in Stockholm.


Künstlerische Darstellung der Zellulosefaden-Produktion: Die Nanofibrillen werden duch seitliche Wasserstrahlen beschleunigt, richten sich dadurch parallel aus und verhaken sich zu einem festen Faden

Illustration: DESY/Eberhard Reimann

"Die echte Herausforderung ist allerdings, daraus Biomaterialien mit hoher Steifigkeit zu machen, die beispielsweise für Rotorblätter von Windkrafträdern benutzt werden könnten. Mit weiteren Verbesserungen, insbesondere bei der Ausrichtung der Fibrillen, wird dies möglich werden."

Für ihr Verfahren spülen die Forscher die winzigen Zellulose-Fibrillen mit Wasser durch einen schmalen Kanal. Zwei zusätzliche Wasserstrahlen, die von beiden Seiten in den Kanal münden, beschleunigen den Fluss der Fibrillen.

"Durch die Beschleunigung mit diesen Jets richten sich alle Nanofibrillen mehr oder weniger parallel zur Flussrichtung aus", erläutert Ko-Autor Dr. Stephan Roth, Leiter der Experimentierstation P03 an DESYs Röntgenlichtquelle PETRA III, an der die Versuche stattfanden. "Außerdem spülen die Jets Salze in den Fluss. Diese Salze sorgen dafür, dass die Fibrillen sich aneinanderheften und legen damit bereits die Struktur des künftigen Fadens fest."

Anschließend werden die noch feuchten Fasern an der Luft getrocknet, wodurch sie zu einem kräftigen Faden zusammenschrumpfen. "Das Trocknen dauert nur ein paar Minuten an der Luft", erklärt Ko-Autor Dr. Daniel Söderberg von der KTH. "Das fertige Material ist vollständig biokompatibel, da die natürliche Struktur der Zellulose in den Fibrillen erhalten bleibt. Es ist daher biologisch abbaubar und sogar verträglich mit menschlichem Gewebe."

Das helle Röntgenlicht von PETRA III erlaubte den Forschern, den Produktionsprozess im Detail zu verfolgen und die Konfiguration der Nanofibrillen an verschiedenen Stellen im Fluss zu überprüfen. "Forschung wird heutzutage von interdisziplinärer Zusammenarbeit angetrieben", betont Söderberg. "Ohne die große Kompetenz und die Möglichkeiten, die das Team von DESYs Messstation P03 in das Projekt eingebracht hat, wäre dies nicht gelungen."

Wie die Forscher berichten, ist ihr Garn stärker als alle anderen bisher präsentierten künstlichen Fäden aus Zellulose-Nanofibrillen. Sie können sogar mit den stärksten natürlichen Zellstofffäden mithalten, die man bisher aus Holz extrahiert hat, und besitzen eine gleichhohe Parallelausrichtung der Nanofibrillen. "Wir können im Prinzip sehr lange Fäden flechten", betont Lundell. "Bis jetzt sind unsere längsten Probestücke ungefähr zehn Zentimeter lang, aber das ist mehr eine technische Frage und kein grundsätzliches Problem."

Die im Experiment eingesetzten Nanofibrillen stammten aus frischem Holz. "Im Prinzip sollte es auch möglich sein, Fibrillen zum Beispiel aus Altpapier zu extrahieren", sagt Lundell. "Das Potenzial von Recyclingmaterial für diese Technik muss allerdings erst genauer untersucht werden."

Das Deutsche Elektronen-Synchrotron DESY ist das führende deutsche Beschleunigerzentrum und eines der führenden weltweit. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom BMBF und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert. An seinen Standorten in Hamburg und Zeuthen bei Berlin entwickelt, baut und betreibt DESY große Teilchenbeschleuniger und erforscht damit die Struktur der Materie. Die Kombination von Forschung mit Photonen und Teilchenphysik bei DESY ist einmalig in Europa.

Originalveröffentlichung
“Hydrodynamic alignment and assembly of nano-fibrils resulting in strong cellulose filaments”; Karl M. O. Håkansson, Andreas B. Fall, Fredrik Lundell, Shun Yu, Christina Krywka, Stephan V. Roth, Gonzalo Santoro, Mathias Kvick, Lisa Prahl Wittberg, Lars Wågberg & L. Daniel Söderberg; "Nature Communications", 2014; DOI: 10.1038/ncomms5018

Wissenschaftliche Ansprechpartner
Prof. Fredrik Lundell; Wallenberg Wood Science Center, KTH Mechanics, Stockholm; +46 708 35 64 45; fredrik@mech.kth.se
Dr. Stephan Roth; DESY Photon Science; +49 40 8998-2934; stephan.roth@desy.de

Dr. Thomas Zoufal | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.desy.de/

Weitere Berichte zu: DESY Elektronen-Synchrotron Fibrillen Fluss Forschung Fäden Holz Kanal Luft Nanofibrillen PETRA Röntgenquelle Salze Stahl Zellulose

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenmechanik ist komplex genug – vorerst …
21.04.2017 | Universität Wien

nachricht Tief im Inneren von M87
20.04.2017 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Immunzellen helfen bei elektrischer Reizleitung im Herzen

Erstmals elektrische Kopplung von Muskelzellen und Makrophagen im Herzen nachgewiesen / Erkenntnisse könnten neue Therapieansätze bei Herzinfarkt und Herzrhythmus-Störungen ermöglichen / Publikation am 20. April 2017 in Cell

Makrophagen, auch Fresszellen genannt, sind Teil des Immunsystems und spielen eine wesentliche Rolle in der Abwehr von Krankheitserregern und bei der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

Smart-Data-Forschung auf dem Weg in die wirtschaftliche Praxis

21.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Phoenix Contact übernimmt Spezialisten für Netzleittechnik

24.04.2017 | Unternehmensmeldung

Phoenix Contact beteiligt sich an Berliner Start-up Unternehmen für Energiemanagement

24.04.2017 | Unternehmensmeldung

Phoenix Contact übernimmt Spezialisten für industrielle Kommunikationstechnik

24.04.2017 | Unternehmensmeldung