Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spitzenforschung in der Würzburger Festkörperphysik

22.05.2015

Die Entdeckung und Entwicklung neuer Materialien, die Erforschung der zugrundeliegenden Physik topologischer und korrelierter Elektronensysteme in Festkörpern und die Ausbildung junger Nachwuchswissenschaftler: Das sind die Hauptziele eines neuen Sonderforschungsbereichs an der Uni Würzburg.

Topological and Correlated Electronics at Surfaces and Interfaces oder kurz ToCoTronics: So heißt der neue Sonderforschungsbereich (SFB) an der Universität Würzburg, den die Deutsche Forschungsgemeinschaft (DFG) am 21. Mai genehmigt hat. Daran beteiligt sind 24 Wissenschaftlerinnen und Wissenschaftler aus vier Institutionen der Uni:


Wechselspiel zwischen Topologie (blauer Torus) und starker Korrelation (Elektronenspins, farbige Pfeile, auf einem Quadratgitter): Das sind die Zutaten für die faszinierende Physik von ToCoTronics.

Grafik: Jörg Schäfer


Molekularstrahlepitaxie am Physikalischen Institut: In solchen Anlagen werden neuartige, topologische Materialien von höchster Qualität hergestellt.

Foto: Felicitas Gerhard, Lehrstuhl für Experimentelle Physik III

• dem Physikalischen Institut (PI)
• dem Institut für Theoretische Physik und Astronomie (ITPA)
• dem Röntgen Center for Complex Material Systems (RCCM)
• dem Gottfried Landwehr Laboratory for Nanotechnology (GLLN).

Die Förderung für die ersten vier Jahre umfasst rund elf Millionen Euro, worin fast 30 Stellen für den wissenschaftlichen Nachwuchs enthalten sind. Sprecher des neuen SFBs sind die Professoren Ralph Claessen, Inhaber des Lehrstuhls für Experimentelle Physik IV, und Björn Trauzettel, Inhaber des Lehrstuhls für Theoretische Physik IV.

Worum geht es?

Viele Hochtechnologien, wie beispielsweise Computer, Handy, Solarzellen oder Elektromobilität, beruhen auf dem physikalischen Verhalten von Elektronen. Dabei sind vor allem zwei Eigenschaften dieses Elementarteilchens wichtig: seine elektrische Ladung und sein Spin. Die Ladung macht sich bemerkbar, wenn sich Elektronen bewegen, also wenn elektrischer Strom fließt. Moderne Computerchips nutzen diese Eigenschaft, indem sie gezielt kleine elektrische Ströme kontrollieren, ähnlich wie Ampeln oder Verkehrspolizisten den Autoverkehr regeln. Der Spin dagegen bezeichnet die Eigenschaft der Elektronen, sich in einem magnetischen Feld wie kleine Kompassnadeln auszurichten. Darauf beruht beispielsweise die Funktion von magnetischen Festplatten in der Datenspeicherung.

Die physikalischen Regeln, nach denen sich Ladung und Spin in den Bauelementen heutiger Computertechnologie manipulieren lassen, sind gut bekannt und beherrscht. Um eine höhere Leistung zu erzielen, werden jedoch immer kleinere Bauelemente benötigt. Mit fortschreitender Miniaturisierung stoßen die etablierten Regeln aber zunehmend an Grenzen und werden durch quantenphysikalische Gesetzmäßigkeiten abgelöst. So verstärkt sich beispielsweise die gegenseitige Abstoßung der negativ geladenen Elektronen, was zu elektronischen Korrelationen und der Entstehung komplexer Phasen führt, die es in nicht wechselwirkenden Systemen gar nicht geben kann. Der Ferromagnetismus ist ein Paradebeispiel, das uns sogar im Alltagsleben häufig begegnet.

Ein weiteres Phänomen, das in der konventionellen Elektronik kaum eine Rolle spielt, ist die gegenseitige Beeinflussung von Spin und bewegter Ladung – ein Effekt, der sich aus Einsteins Relativitätstheorie ergibt und zu neuartigem Verhalten führt, das mit dem Begriff topologische Physik umschrieben wird. Der Name stammt daher, dass sich topologische Materialien durch das mathematische Konzept der Topologie klassifizieren lassen. Im Inneren solcher Materialien verhalten sie sich wie ganz gewöhnliche Festkörper, beispielsweise wie Isolatoren, aber an ihren Oberflächen passiert etwas Überraschendes: Ein topologischer Isolator wird dort plötzlich zu einem guten elektrischen Leiter.

Was sind die wissenschaftlichen Fragestellungen?

Nachdem derartige Effekte im Jahre 2005 zunächst theoretisch vorhergesagt wurden, gelang Professor Laurens Molenkamp vom Physikalischen Institut der Universität Würzburg bereits 2007 der weltweit erste experimentelle Nachweis eines topologischen Isolators. Damit wurde eines der aktivsten internationalen Forschungsgebiete der modernen Festkörperphysik initiiert. Diese Entdeckung basiert auf einem außergewöhnlichen Halbleitermaterial, das aus den chemischen Elementen Quecksilber, Cadmium und Tellur besteht und nur in wenigen Laboren weltweit in der erforderlichen Qualität hergestellt werden kann.

Zu den wissenschaftlichen Zielen des Sonderforschungsbereichs "ToCoTronics" gehört sowohl die physikalische Untersuchung dieses speziellen Materials und seiner topologischen Eigenschaften als auch die gezielte Suche nach topologischer Physik in anderen Materialklassen oder Materialkombinationen. Die Würzburger Forscher interessieren sich hier insbesondere für die Verknüpfung von topologischer Physik mit elektronischen Korrelationseffekten, die völlig neuartige Phänomene erwarten lassen, wie etwa topologische Supraleitung oder ungewöhnliche Formen von Magnetismus.

Was sind mögliche Anwendungen?

Die genannten Phänomene – elektronische Korrelationen und topologische Physik und vor allem ihr Wechselspiel – sind bisher nur wenig verstanden, besitzen aber großes Anwendungspotential für neuartige und zukunftsweisende Technologien. Beispielsweise sind an den Grenzflächen topologischer Materialien die Ausbreitungsrichtung der Ladungsträger und der Spin stark aneinander gekoppelt. Daher verspricht man sich Anwendungen dieser Oberflächenzustände in der sogenannten Spintronik. Dort sollen elektronische Schaltprozesse durch magnetische Schaltprozesse (mithilfe des Spins) ersetzt werden. Dadurch würden logische Bauelemente weniger Energie verbrauchen, was eines der Hauptprobleme heutiger Technologien ist. Darüber hinaus eignen sich die Eigenschaften topologischer Materialien möglicherweise auch für die Verwirklichung von sogenannten Quantumcomputern, denen ein völlig neuartiges Konzept der Datenverarbeitung zugrunde liegt. Innerhalb des SFB 1170 möchten die beteiligten Wissenschaftler, auf mittel- bis langfristigen Zeitskalen, die physikalischen und technologischen Grundlagen für solche Anwendungen erarbeiten.

Was bedeutet der SFB für die Universität Würzburg?

Eine wissenschaftliche Herausforderung dieser Größenordnung erfordert die interdisziplinäre Zusammenarbeit vieler Experten aus verschiedensten Bereichen der experimentellen und theoretischen Festkörperphysik – und vor allem einen langen Atem. Das Konzept des Sonderforschungsbereichs mit seiner auf insgesamt zwölf Jahre angelegten DFG-Förderung ist daher wie geschaffen für einen solch aufwändigen Forschungsansatz.

Durch gezielte Neuberufungen der letzten Jahre sind in der Würzburger Festkörperphysik die Voraussetzungen für den neuen Sonderforschungsbereich geschaffen worden; bereits jetzt arbeiten Experimentalphysiker und Theoretiker Hand in Hand. Diese Kooperationen werden durch den neuen SFB entscheidend gestärkt und zielgerichtet strukturiert. Dabei spielt die Einbindung der technischen Infrastruktureinrichtungen von RCCM und GLLN eine wichtige Rolle. Last but not least ist die Förderung des wissenschaftlichen Nachwuchses ein zentrales Anliegen des SFB, schließlich wird ein wesentlicher Teil des Forschungsprogramms von den beteiligten Doktorandinnen und Doktoranden getragen.

Kontakt

Prof. Dr. Ralph Claessen, T: (0931) 31-85732, claessen@physik.uni-wuerzburg.de
Prof. Dr. Björn Trauzettel, T: (0931) 31-83638, trauzettel@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

nachricht NAWI Graz-Forschende vermessen Lichtfelder erstmals in 3D
26.06.2017 | Technische Universität Graz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

Fraunhofer FKIE ist Gastgeber für internationale Experten Digitaler Mensch-Modelle

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Der Krümmung einen Schritt voraus

27.06.2017 | Informationstechnologie

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungsnachrichten

Überschwemmungen genau in den Blick nehmen

27.06.2017 | Informationstechnologie