Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sonnenexplosionen im Computer

24.09.2014

Starke Eruptionen auf der Sonne können auf der Erde Kommunikations- und Stromnetze lahm legen. ETH-Physiker zeigen, wie die gigantischen Ausbrüche entstehen, und legen damit einen Baustein für künftige Voraussagen.

Je weniger Zeit zwischen zwei Explosionen in der Sonnenatmosphäre verstreicht, desto höher ist die Wahrscheinlichkeit, dass der zweite Ausbruch stärker ist als der erste. Dies haben ETH-Professor Hans Jürgen Herrmann und sein Team mit Hilfe von Modellrechnungen erklärt.

Bei Sonneneruptionen werden ungeheure Energiemengen freigesetzt, die millionenfach grösser sind als bei Vulkanexplosionen. Bei starken Explosionen kommt es oft zu einem Masseausstoss aus dem äussersten Teil der Sonnenatmosphäre, der Korona. Trifft ein koronaler Massenauswurf auf die Erde, kann er einen geomagnetischen Sturm auslösen.

Schwere Stürme können Satelliten, den Funkverkehr und elektrische Anlagen stören. Als im Herbst 2003 einige der bisher stärksten Eruptionen auf der Sonne registriert wurden, fiel in Südschweden der Strom aus, und Flugrouten mussten umgeleitet werden, weil Kommunikationsverbindungen über den Polregionen zusammenbrachen.

Die ETH-Forscher haben untersucht, was bei den Explosionen auf der Sonne geschieht. In einem Computermodell konnten sie die statistische Grössenverteilung und zeitliche Abfolge der Eruptionen korrekt nachbilden. «Die Übereinstimmung mit Satellitenmessungen ist beeindruckend», schreiben die Wissenschaftler in der Fachzeitschrift «Nature Communications».

Die Sonne sei eigentlich gar nicht sein Thema, sagt Hans Herrmann, Professor am Institut für Baustoffe. Der theoretische Physiker ist Fachmann für Computerphysik und hat eine Methode entwickelt, mit der sich Phänomene aus verschiedensten Gebieten untersuchen lassen. Ähnliche Muster wie bei Sonneneruptionen findet man bei Erdbeben, Lawinen oder dem Börsenmarkt.

Stossweise Entladung

«Natürlich haben die Sonnenexplosionen keinen Zusammenhang mit den Börsenkursen», sagt Herrmann. Doch im Kern zeigen diese Systeme alle ein ähnliches Verhalten: Sie können sich verhaken, bis ein bestimmter Schwellenwert erreicht ist. Dann entladen sie sich.

Die Masse oder Energie, die man in ein System stecke, werde also nicht kontinuierlich wieder abgegeben, sondern stossweise, erklärt Herrmann. Die Fachleute sprechen von selbstorganisierter Kritizität. Ein Beispiel dafür ist ein Sandhaufen, auf den Körner herabrieseln. Der Haufen wächst, bis sich ab und zu eine Lawine löst. Kleinere Rutschungen sind häufiger, grosse seltener. Über lange Zeiten betrachtet bleibt der Haufen gleich hoch, er organisiert sich selbst um einen kritischen Zustand.

Bei Sonneneruptionen wird magnetische Energie, die sich aufgestaut hat, plötzlich frei gesetzt. Die Sonne besteht aus einem heissem Plasma aus Elektronen und Ionen. Aus der Sonnenoberfläche, Photosphäre genannt, wachsen Magnetfeldlinien bis in die Sonnenkorona heraus. Es bilden sich Bündel aus Feldlinien, sogenannte Magnetfeldschläuche, die sich bewegen und verdrehen.

Überkreuzen sich zwei Schläuche, so vereinigen sie sich (Physiker sprechen von einer Rekombination), und es kommt zu einer Explosion, bei der grosse Mengen elektromagnetischer Strahlung entweichen. Das betreffende Gebiet auf der Sonne leuchtet hell auf als sogenanntes Solar Flare. Die Strahlung erstreckt sich über das gesamte elektromagnetische Spektrum von Radiowellen über sichtbares Licht bis zu Röntgen- und Gammastrahlen.

Aus Beobachtungen weiss man, dass die Grössenverteilung der Solar Flares statistisch einer bestimmten Gesetzmässigkeit folgen: «Es gibt beliebig grosse Ereignisse, diese sind aber beliebig selten», sagt Herrmann. Mathematisch ausgedrückt handelt es sich um eine skalenfreie Energieverteilung, die einem Potenzgesetz folgt.

Turbulentes System

Bisherige Computermodelle konnten diese statistische Grössenverteilung zwar qualitativ nachbilden, sie erlaubten aber keine quantitativen Aussagen. Ein Modell, das auf der Kreuzung der Magnetschläuche und damit auf der selbstorganisierten Kritizität basierte, vernachlässigte eine wichtige Tatsache, sagt Herrmann: «Das System ist turbulent.»

Die Magnetfeldlinien bewegen sich in der Sonnenkorona nicht zufällig, sondern sind im turbulenten Plasma der Photosphäre verankert, dessen Verhalten sich mit der Fluiddynamik, der Wissenschaft von der Bewegung von Flüssigkeiten und Gasen, beschreiben lässt. Berechnungen, die sich ausschliesslich auf die Turbulenz des Plasmas stützten, konnten die beobachteten Muster beim Auftreten der Solar Flares allerdings auch nicht vollständig reproduzieren.

Herrmann und sein Team kombinierten deshalb selbstorganisierte Kritizität und Fluiddynamik und schafften damit einen Durchbruch. «Uns ist es gelungen, das gesamte Bild, wie die Solar Flares auftreten, wiederzugeben», sagt der Forscher.

Mit wochenlangen Rechnungen auf einem Supercomputer konnte das Team zeigen, dass sein Modell immer korrekte Resultate lieferte, auch wenn Details wie beispielsweise die Zahl der Magnetschläuche oder die Energie des Plasmas geändert wurden. Im Gegensatz zu den früheren Versuchen anderer Forscher stimmten die Resultate auch quantitativ mit den Beobachtungen überein.

Aus ihren Berechnungen schliessen die Wissenschaftler: «Die Turbulenz und die Wechselwirkung zwischen den Magnetschläuchen sind die wesentlichen physikalischen Bestandteile, die das Auftreten der Solar Flares kontrollieren.» Dieser Nachweis von zeitlich-energetischen Zusammenhängen sei der erste Schritt für ein Vorhersagemodell. Doch Herrmann warnt: «Unsere Aussagen sind statistisch.» Man könne deshalb nur Wahrscheinlichkeiten voraussagen. Prognosen einzelner Ereignisse seien nicht möglich.

Literaturhinweis

Mendoza M, Kaydul A, de Arcangelis L, Andrade JS, Herrmann HJ: Modelling the influence of photospheric turbulence on solar flare statistics. Nature Communications, Online-Publikation vom 23. September 2014. DOI: 10.1038/ncomms6035

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/09/sonnenexpl...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Drei Generationen an Sternen unter einem Dach
27.07.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Physiker designen ultrascharfe Pulse
27.07.2017 | Universität Innsbruck

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie