Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sonnenexplosionen im Computer

24.09.2014

Starke Eruptionen auf der Sonne können auf der Erde Kommunikations- und Stromnetze lahm legen. ETH-Physiker zeigen, wie die gigantischen Ausbrüche entstehen, und legen damit einen Baustein für künftige Voraussagen.

Je weniger Zeit zwischen zwei Explosionen in der Sonnenatmosphäre verstreicht, desto höher ist die Wahrscheinlichkeit, dass der zweite Ausbruch stärker ist als der erste. Dies haben ETH-Professor Hans Jürgen Herrmann und sein Team mit Hilfe von Modellrechnungen erklärt.

Bei Sonneneruptionen werden ungeheure Energiemengen freigesetzt, die millionenfach grösser sind als bei Vulkanexplosionen. Bei starken Explosionen kommt es oft zu einem Masseausstoss aus dem äussersten Teil der Sonnenatmosphäre, der Korona. Trifft ein koronaler Massenauswurf auf die Erde, kann er einen geomagnetischen Sturm auslösen.

Schwere Stürme können Satelliten, den Funkverkehr und elektrische Anlagen stören. Als im Herbst 2003 einige der bisher stärksten Eruptionen auf der Sonne registriert wurden, fiel in Südschweden der Strom aus, und Flugrouten mussten umgeleitet werden, weil Kommunikationsverbindungen über den Polregionen zusammenbrachen.

Die ETH-Forscher haben untersucht, was bei den Explosionen auf der Sonne geschieht. In einem Computermodell konnten sie die statistische Grössenverteilung und zeitliche Abfolge der Eruptionen korrekt nachbilden. «Die Übereinstimmung mit Satellitenmessungen ist beeindruckend», schreiben die Wissenschaftler in der Fachzeitschrift «Nature Communications».

Die Sonne sei eigentlich gar nicht sein Thema, sagt Hans Herrmann, Professor am Institut für Baustoffe. Der theoretische Physiker ist Fachmann für Computerphysik und hat eine Methode entwickelt, mit der sich Phänomene aus verschiedensten Gebieten untersuchen lassen. Ähnliche Muster wie bei Sonneneruptionen findet man bei Erdbeben, Lawinen oder dem Börsenmarkt.

Stossweise Entladung

«Natürlich haben die Sonnenexplosionen keinen Zusammenhang mit den Börsenkursen», sagt Herrmann. Doch im Kern zeigen diese Systeme alle ein ähnliches Verhalten: Sie können sich verhaken, bis ein bestimmter Schwellenwert erreicht ist. Dann entladen sie sich.

Die Masse oder Energie, die man in ein System stecke, werde also nicht kontinuierlich wieder abgegeben, sondern stossweise, erklärt Herrmann. Die Fachleute sprechen von selbstorganisierter Kritizität. Ein Beispiel dafür ist ein Sandhaufen, auf den Körner herabrieseln. Der Haufen wächst, bis sich ab und zu eine Lawine löst. Kleinere Rutschungen sind häufiger, grosse seltener. Über lange Zeiten betrachtet bleibt der Haufen gleich hoch, er organisiert sich selbst um einen kritischen Zustand.

Bei Sonneneruptionen wird magnetische Energie, die sich aufgestaut hat, plötzlich frei gesetzt. Die Sonne besteht aus einem heissem Plasma aus Elektronen und Ionen. Aus der Sonnenoberfläche, Photosphäre genannt, wachsen Magnetfeldlinien bis in die Sonnenkorona heraus. Es bilden sich Bündel aus Feldlinien, sogenannte Magnetfeldschläuche, die sich bewegen und verdrehen.

Überkreuzen sich zwei Schläuche, so vereinigen sie sich (Physiker sprechen von einer Rekombination), und es kommt zu einer Explosion, bei der grosse Mengen elektromagnetischer Strahlung entweichen. Das betreffende Gebiet auf der Sonne leuchtet hell auf als sogenanntes Solar Flare. Die Strahlung erstreckt sich über das gesamte elektromagnetische Spektrum von Radiowellen über sichtbares Licht bis zu Röntgen- und Gammastrahlen.

Aus Beobachtungen weiss man, dass die Grössenverteilung der Solar Flares statistisch einer bestimmten Gesetzmässigkeit folgen: «Es gibt beliebig grosse Ereignisse, diese sind aber beliebig selten», sagt Herrmann. Mathematisch ausgedrückt handelt es sich um eine skalenfreie Energieverteilung, die einem Potenzgesetz folgt.

Turbulentes System

Bisherige Computermodelle konnten diese statistische Grössenverteilung zwar qualitativ nachbilden, sie erlaubten aber keine quantitativen Aussagen. Ein Modell, das auf der Kreuzung der Magnetschläuche und damit auf der selbstorganisierten Kritizität basierte, vernachlässigte eine wichtige Tatsache, sagt Herrmann: «Das System ist turbulent.»

Die Magnetfeldlinien bewegen sich in der Sonnenkorona nicht zufällig, sondern sind im turbulenten Plasma der Photosphäre verankert, dessen Verhalten sich mit der Fluiddynamik, der Wissenschaft von der Bewegung von Flüssigkeiten und Gasen, beschreiben lässt. Berechnungen, die sich ausschliesslich auf die Turbulenz des Plasmas stützten, konnten die beobachteten Muster beim Auftreten der Solar Flares allerdings auch nicht vollständig reproduzieren.

Herrmann und sein Team kombinierten deshalb selbstorganisierte Kritizität und Fluiddynamik und schafften damit einen Durchbruch. «Uns ist es gelungen, das gesamte Bild, wie die Solar Flares auftreten, wiederzugeben», sagt der Forscher.

Mit wochenlangen Rechnungen auf einem Supercomputer konnte das Team zeigen, dass sein Modell immer korrekte Resultate lieferte, auch wenn Details wie beispielsweise die Zahl der Magnetschläuche oder die Energie des Plasmas geändert wurden. Im Gegensatz zu den früheren Versuchen anderer Forscher stimmten die Resultate auch quantitativ mit den Beobachtungen überein.

Aus ihren Berechnungen schliessen die Wissenschaftler: «Die Turbulenz und die Wechselwirkung zwischen den Magnetschläuchen sind die wesentlichen physikalischen Bestandteile, die das Auftreten der Solar Flares kontrollieren.» Dieser Nachweis von zeitlich-energetischen Zusammenhängen sei der erste Schritt für ein Vorhersagemodell. Doch Herrmann warnt: «Unsere Aussagen sind statistisch.» Man könne deshalb nur Wahrscheinlichkeiten voraussagen. Prognosen einzelner Ereignisse seien nicht möglich.

Literaturhinweis

Mendoza M, Kaydul A, de Arcangelis L, Andrade JS, Herrmann HJ: Modelling the influence of photospheric turbulence on solar flare statistics. Nature Communications, Online-Publikation vom 23. September 2014. DOI: 10.1038/ncomms6035

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/09/sonnenexpl...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics