Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Sonnenexplosionen im Computer

24.09.2014

Starke Eruptionen auf der Sonne können auf der Erde Kommunikations- und Stromnetze lahm legen. ETH-Physiker zeigen, wie die gigantischen Ausbrüche entstehen, und legen damit einen Baustein für künftige Voraussagen.

Je weniger Zeit zwischen zwei Explosionen in der Sonnenatmosphäre verstreicht, desto höher ist die Wahrscheinlichkeit, dass der zweite Ausbruch stärker ist als der erste. Dies haben ETH-Professor Hans Jürgen Herrmann und sein Team mit Hilfe von Modellrechnungen erklärt.

Bei Sonneneruptionen werden ungeheure Energiemengen freigesetzt, die millionenfach grösser sind als bei Vulkanexplosionen. Bei starken Explosionen kommt es oft zu einem Masseausstoss aus dem äussersten Teil der Sonnenatmosphäre, der Korona. Trifft ein koronaler Massenauswurf auf die Erde, kann er einen geomagnetischen Sturm auslösen.

Schwere Stürme können Satelliten, den Funkverkehr und elektrische Anlagen stören. Als im Herbst 2003 einige der bisher stärksten Eruptionen auf der Sonne registriert wurden, fiel in Südschweden der Strom aus, und Flugrouten mussten umgeleitet werden, weil Kommunikationsverbindungen über den Polregionen zusammenbrachen.

Die ETH-Forscher haben untersucht, was bei den Explosionen auf der Sonne geschieht. In einem Computermodell konnten sie die statistische Grössenverteilung und zeitliche Abfolge der Eruptionen korrekt nachbilden. «Die Übereinstimmung mit Satellitenmessungen ist beeindruckend», schreiben die Wissenschaftler in der Fachzeitschrift «Nature Communications».

Die Sonne sei eigentlich gar nicht sein Thema, sagt Hans Herrmann, Professor am Institut für Baustoffe. Der theoretische Physiker ist Fachmann für Computerphysik und hat eine Methode entwickelt, mit der sich Phänomene aus verschiedensten Gebieten untersuchen lassen. Ähnliche Muster wie bei Sonneneruptionen findet man bei Erdbeben, Lawinen oder dem Börsenmarkt.

Stossweise Entladung

«Natürlich haben die Sonnenexplosionen keinen Zusammenhang mit den Börsenkursen», sagt Herrmann. Doch im Kern zeigen diese Systeme alle ein ähnliches Verhalten: Sie können sich verhaken, bis ein bestimmter Schwellenwert erreicht ist. Dann entladen sie sich.

Die Masse oder Energie, die man in ein System stecke, werde also nicht kontinuierlich wieder abgegeben, sondern stossweise, erklärt Herrmann. Die Fachleute sprechen von selbstorganisierter Kritizität. Ein Beispiel dafür ist ein Sandhaufen, auf den Körner herabrieseln. Der Haufen wächst, bis sich ab und zu eine Lawine löst. Kleinere Rutschungen sind häufiger, grosse seltener. Über lange Zeiten betrachtet bleibt der Haufen gleich hoch, er organisiert sich selbst um einen kritischen Zustand.

Bei Sonneneruptionen wird magnetische Energie, die sich aufgestaut hat, plötzlich frei gesetzt. Die Sonne besteht aus einem heissem Plasma aus Elektronen und Ionen. Aus der Sonnenoberfläche, Photosphäre genannt, wachsen Magnetfeldlinien bis in die Sonnenkorona heraus. Es bilden sich Bündel aus Feldlinien, sogenannte Magnetfeldschläuche, die sich bewegen und verdrehen.

Überkreuzen sich zwei Schläuche, so vereinigen sie sich (Physiker sprechen von einer Rekombination), und es kommt zu einer Explosion, bei der grosse Mengen elektromagnetischer Strahlung entweichen. Das betreffende Gebiet auf der Sonne leuchtet hell auf als sogenanntes Solar Flare. Die Strahlung erstreckt sich über das gesamte elektromagnetische Spektrum von Radiowellen über sichtbares Licht bis zu Röntgen- und Gammastrahlen.

Aus Beobachtungen weiss man, dass die Grössenverteilung der Solar Flares statistisch einer bestimmten Gesetzmässigkeit folgen: «Es gibt beliebig grosse Ereignisse, diese sind aber beliebig selten», sagt Herrmann. Mathematisch ausgedrückt handelt es sich um eine skalenfreie Energieverteilung, die einem Potenzgesetz folgt.

Turbulentes System

Bisherige Computermodelle konnten diese statistische Grössenverteilung zwar qualitativ nachbilden, sie erlaubten aber keine quantitativen Aussagen. Ein Modell, das auf der Kreuzung der Magnetschläuche und damit auf der selbstorganisierten Kritizität basierte, vernachlässigte eine wichtige Tatsache, sagt Herrmann: «Das System ist turbulent.»

Die Magnetfeldlinien bewegen sich in der Sonnenkorona nicht zufällig, sondern sind im turbulenten Plasma der Photosphäre verankert, dessen Verhalten sich mit der Fluiddynamik, der Wissenschaft von der Bewegung von Flüssigkeiten und Gasen, beschreiben lässt. Berechnungen, die sich ausschliesslich auf die Turbulenz des Plasmas stützten, konnten die beobachteten Muster beim Auftreten der Solar Flares allerdings auch nicht vollständig reproduzieren.

Herrmann und sein Team kombinierten deshalb selbstorganisierte Kritizität und Fluiddynamik und schafften damit einen Durchbruch. «Uns ist es gelungen, das gesamte Bild, wie die Solar Flares auftreten, wiederzugeben», sagt der Forscher.

Mit wochenlangen Rechnungen auf einem Supercomputer konnte das Team zeigen, dass sein Modell immer korrekte Resultate lieferte, auch wenn Details wie beispielsweise die Zahl der Magnetschläuche oder die Energie des Plasmas geändert wurden. Im Gegensatz zu den früheren Versuchen anderer Forscher stimmten die Resultate auch quantitativ mit den Beobachtungen überein.

Aus ihren Berechnungen schliessen die Wissenschaftler: «Die Turbulenz und die Wechselwirkung zwischen den Magnetschläuchen sind die wesentlichen physikalischen Bestandteile, die das Auftreten der Solar Flares kontrollieren.» Dieser Nachweis von zeitlich-energetischen Zusammenhängen sei der erste Schritt für ein Vorhersagemodell. Doch Herrmann warnt: «Unsere Aussagen sind statistisch.» Man könne deshalb nur Wahrscheinlichkeiten voraussagen. Prognosen einzelner Ereignisse seien nicht möglich.

Literaturhinweis

Mendoza M, Kaydul A, de Arcangelis L, Andrade JS, Herrmann HJ: Modelling the influence of photospheric turbulence on solar flare statistics. Nature Communications, Online-Publikation vom 23. September 2014. DOI: 10.1038/ncomms6035

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2014/09/sonnenexpl...

Peter Rüegg | ETH Zürich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics