Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Simulation: Neuartiger zweidimensionaler Schaltkreis funktioniert mit magnetischen Quantenteilchen

22.01.2018

Ob Smartphone, Rechner oder Dialysemaschine – kein elektronisches Gerät kommt ohne Chip und seine elektronischen Schaltkreise aus. Die einzelnen Schaltelemente sind hierbei oft durch dreidimensionale sogenannte Brückenkonstruktionen verdrahtet. An einer leistungsfähigeren Variante arbeiten derzeit Physiker an der Technischen Universität Kaiserslautern (TUK). Anstatt Elektronen nutzen sie bestimmte Quantenteilchen, die Magnonen. Im Modell haben sie erstmals gezeigt, wie für diese Teilchen Stromflüsse in einem integrierten magnonischen Schaltkreis möglich sind. Dabei verbinden sie die Elemente nur zweidimensional. Die Studie wurde in der Fachzeitschrift „Science Advances“ veröffentlicht.

Als der US-amerikanische Ingenieur Jack Kilby in den 1960er Jahren den integrierten Schaltkreis entwickelte, kam dies einer technischen Revolution gleich: Zunächst nur in einem Taschenrechner verbaut, ermöglichte die Technik kurze Zeit später den Siegeszug der Computer, die von da an mit immer kleineren Prozessoren auskamen.


Doktorand Qi Wang, Erstautor der aktuellen Studie

Foto: TUK/Koziel


Die Grafik zeigt einen herkömmlichen Schaltkreis (li.) und einen magnonischen Schaltkreis, der mit einer zweidimensionalen Verdrahtung auskommt.

Foto: AG Hillebrands

„Diese Schaltkreise stellen die Grundlage für unsere heute gängige Elektronik dar“, sagt Juniorprofessor Dr. Andrii Chumak, der am Lehrstuhl für Magnetismus bei Professor Dr. Burkard Hillebrands an der TUK im Fachbereich Physik forscht. Für seine Arbeiten erhielt Kilby, auch Vater des Mikrochips genannt, im Jahr 2000 den Nobelpreis für Physik.

An einer neuen Generation von Schaltkreisen arbeiten die Physiker um Chumak und seinen Doktoranden Qi Wang, der Erstautor der aktuellen Studie. Sie nutzen dabei Spinwellen. „Diese können Information in Form des Eigendrehimpulses in magnetischen Materialien transportieren“, fährt Chumak fort.

„Die Quantenteilchen solcher Wellen sind Magnonen.“ Im Vergleich zu Elektronen können sie wesentlich mehr Informationen transportieren, verbrauchen dabei viel weniger Energie und erzeugen weniger Abwärme. Dies macht sie beispielsweise für schnellere und leistungsfähigere Rechner interessant.

In der nun erschienenen Studie beschreiben die Wissenschaftler erstmals einen sogenannten integrierten magnonischen Schaltkreis, in welchem Informationen mittels dieser Teilchen übertragen werden. Wie auch bei gängigen elektronischen Schaltkreisen sind hierbei Leiter und sogenannte Leitungskreuzungen notwendig, um die einzelnen Schaltelemente zu verbinden. In ihrer Simulation ist es den Forschern nun gelungen, eine solche Kreuzung für Magnonen zu entwickeln.

„Dazu haben wir in unsere Berechnungen ein Phänomen mit einbezogen, das in der Physik schon bekannt ist und in der Magnonik erstmals zum Einsatz kommt“, sagt Qi Wang. „Wenn zwei Magnonenleiter äußerst eng nebeneinanderliegen, reden die Wellen gewissermaßen miteinander, das heißt, die Energie der Wellen wird vom einen Leiter auf den anderen übertragen.“ In der Optik findet dies schon länger Verwendung, zum Beispiel um Informationen zwischen Lichtwellenleitern (Glasfasern) zu übertragen.

Dies macht sich auch das „Nano-Magnonik“-Team, ein Teil des Lehrstuhls von Professor Hillebrands um Chumak und Wang, zunutze, um Schaltelemente auf einem magnonischen Chip in einer neuen Art und Weise zu verdrahten. Das Besondere hierbei: Sie kommen bei den Leitungskreuzungen ohne eine dreidimensionale Brückenkonstruktion aus. Bei klassischen Schaltkreisen ist dies notwendig, um den Elektronenfluss zwischen mehreren Elementen zu gewährleisten.

„Bei unserem Schaltkreis nutzen wir eine zweidimensionale flache Verdrahtung, bei der die Magnonenleiter nur dicht nebeneinander liegen müssen“, sagt Wang. Diese „Kontaktstelle“ nennen die Forscher direktionalen Koppler. Mithilfe des Modells möchten die Forscher nun einen ersten magnonischen Schaltkreis bauen.

Für die künftige Produktion von Computer-Bauteilen ließe sich beispielsweise mit diesen neuartigen Schaltkreisen Material und dadurch auch Kosten einsparen. Darüber hinaus liegt die Größe der simulierten Bauteile im Nanometerbereich, was mit modernen elektronischen Bauteilen vergleichbar ist. Allerdings ist die Informationsdichte bei Magnonen um ein Vielfaches größer.

Für seine Arbeiten auf dem Gebiet der Magnonen hat Juniorprofessor Chumak 2016 einen ERC Starting Grant, einen der höchsten Forschungspreise der EU, erhalten. Der Physiker und sein Doktorand Wang arbeiten am Landesforschungszentrum für Optik und Materialwissenschaften (OPTIMAS), welches vom Land Rheinland-Pfalz finanziert wird.

Die Studie wurde in der renommierten Fachzeitschrift Science Advances veröffentlicht: „Reconfigurable nanoscale spin-wave directional coupler“
DOI: 10.1126/sciadv.1701517

Fragen beantworten:
Juniorprof. Dr. Andrii Chumak
E-Mail: chumak[at]physik.uni-kl.de
Tel.: 0631 205-4203

Qi Wang
E-Mail: qiwang[at]rhrk.uni-kl.de
Tel.: 0631 205-3699

Melanie Löw | Technische Universität Kaiserslautern

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Highlight der Halbleiter-Forschung
20.02.2018 | Technische Universität Chemnitz

nachricht Beobachtung und Kontrolle ultraschneller Prozesse mit Attosekunden-Auflösung
20.02.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics