Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Silicon-Chip "ersetzt" seltene Erden

28.02.2011
Seltene Erden sind teuer - und fixer Bestandteil von Hochleistungsmagneten. Ihre Verwendung für diesen Zweck lässt sich optimieren und damit reduzieren.

Das belegen Computersimulationen eines vom Wissenschaftsfonds FWF unterstützten Spezialforschungsbereiches. Die morgen in den USA vorgestellten Ergebnisse zeigen, dass es bei solchen Magneten lokale Verformungen im Kristallgitter des Materials geben kann. Diese liegen besonders an der Grenze von Materialkörnchen. An diesen Stellen, so Berechnungen der Fachhochschule St. Pölten, wird die Magnetkraft des Materials geschwächt. Optimierungen der Materialstruktur könnten das vermeiden und zum Einsparen von Seltenen Erden beitragen.


Computersimulationen decken Materialstörungen in Seltenen Erden auf. Dadurch kann der Einsatz der speziellen Materialien optimiert werden. Quelle: Thomas Schrefl

Mit 150.000 Tonnen Jahresproduktion sind Seltene Erden gar nicht so selten. Tatsächlich sind sie eher schwer zu gewinnen, als dass sie wirklich selten sind. Einem Lieferengpass steht ein global rasant wachsender Bedarf gegenüber. Denn dank ihrer besonderen chemischen Eigenschaften sind Seltene Erden gesuchte Rohstoffe für die moderne Umwelttechnologie. Ein guter Grund für den Hauptexporteur, die Volksrepublik China, die Ausfuhr zu reduzieren - und für andere Länder, ihre Verwendung zu optimieren. Einen wesentlichen Beitrag dazu können High-End-Computersimulationen leisten, wie Berechnungen der Fachhochschule St. Pölten im Rahmen eines FWF-Spezialforschungsbereiches (SFB) zeigen. Diese werden morgen auf der Jahrestagung der amerikanischen "Minerals, Metals & Materials Society" in San Diego, Kalifornien, erstmals vorgestellt.

KRISE IM KRISTALL
Das Team an der FH St. Pölten studierte dafür die genaue Struktur von Neodym-Magneten. Neben der Seltenen Erde Neodym bestehen diese aus den Elementen Eisen und Bor. Zu den aktuellen Ergebnissen meint der Leiter des Studiengangs Industrial Simulations, Prof. Dr.Thomas Schrefl: "Unsere Simulationen zeigen Störungen der Kristallstruktur in Neodym-Magneten. Diese Störungen führen dazu, dass sich die Ausrichtung der Magnetisierung an dieser Stelle ändert. In einem sogenannten anisotropen Magneten wie dem Neodym-Magneten, in dem alle Teilchen dieselbe Ausrichtung der Magnetisierung haben sollen, schwächt das insgesamt die Leistung des Magneten." Die Simulationen des Teams zeigten, dass solche Störungen an den Grenzflächen der einzelnen Materialkörnchen insbesondere dann auftreten, wenn drei verschiedene Körner aufeinander treffen. An diesen Triplejunctions bildet sich ein nichtmagnetischer Einschluss. In dessen Nähe ist das Kristallgitter gestört. Gleichzeitig wirkt ein hohes entmagnetisierendes Feld, das den Magneten zusätzlich schwächt.

Gefunden wurden diese Störungen durch Simulationen mikromagnetischen Materialverhaltens über mehrere Größendimensionen hinweg: vom atomaren bis zum sichtbaren Größenbereich. Herkömmliche Simulationsverfahren konnten diese Spannweite bisher nicht abdecken. Erst die Kombination einzelner mathematischer Berechnungsmethoden, wie schnelle Randelementeverfahren und Tensorgrid-Methoden, zur Berechnung der magnetischen Felder machten dies möglich. Eine Entwicklung, die das Team um Prof. Schrefl im Rahmen des SFB ViCoM - Vienna Computational Materials Laboratory leisten konnte.

ZUSAMMENHALT DURCH BEWEGUNG
Der Sprecher des SFB, Prof. DI Dr. Georg Kresse vom Bereich Computational Materials Physics der Universität Wien, meint zu den Zielen des SFB: "Unser Ziel ist es, die korrelierte Bewegung von Elektronen genauer zu beschreiben. Diese elektronische Korrelation ist für den Zusammenhalt von Festkörpern und Molekülen hauptverantwortlich. Eine genaue Beschreibung ist daher wichtig, um die mechanischen, elektronischen und optischen Eigenschaften von Materialien präzise vorherzusagen."

In insgesamt zwölf Projektgruppen sind dabei über 50 ForscherInnen mit der Beschreibung von Materialeigenschaften befasst, die große Bedeutung für zahlreiche Zukunftstechnologien haben. Dazu zählen die Mikroelektronik genauso wie die Solartechnologie und Polymerherstellung. Aber auch zur Optimierung magnetischer und magneto-optischer Speicher sowie von Hochleistungsmagneten für Elektroautos oder Windturbinen leistet der SFB einen zukunftsweisenden Beitrag. Die Bedeutung der Arbeiten in diesem SFB des FWF reichen dabei durchaus über das rein Wissenschaftliche hinaus - wie die jüngsten Diskussionen um die Verfügbarkeit und strategische Bedeutung Seltener Erden zeigen. Ein überzeugender Beleg dafür, dass Erkenntnisse der Grundlagenforschung unvorhergesehen und rasch an Bedeutung gewinnen können.

Wissenschaftlicher Kontakt:
Prof. Dr. Thomas Schrefl
Fachhochschule St. Pölten
Matthias Corvinus-Str. 15
3100 St. Pölten
T +43 / 2742 / 313 228 - 313
E thomas.schrefl@fhstp.ac.at
W http://www.fhstp.ac.at
Der Wissenschaftsfonds FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Redaktion & Aussendung:
PR&D - Public Relations für
Forschung & Bildung
Mariannengasse 8
1090 Wien
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Raphaela Spadt | PR&D
Weitere Informationen:
http://www.fwf.ac.at
http://www.fhstp.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise