Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schaukeln eines Atoms

17.12.2009
Optoelektronische Rückkopplung stabilisiert die Bahn eines einzelnen Atoms in Echtzeit.

Wenn ein Vater sein Kind auf einer Schaukel zum Schwingen bringt, werden komplexe Rückkopplungsmechanismen wirksam: sobald sich die Schaukel ihm nähert, stößt der Vater sie genau zum richtigen Zeitpunkt mit der richtigen Kraft an. Ganz ähnlich funktioniert die schnelle Rückkopplungslogik, die ein Team um Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik in Garching bei München entwickelt hat (Nature, N° 2009-08-10110A, DOI: 10.1038/nature08563).


Visualisierung des Regelkreises: Ein einzelnes, zwischen zwei hoch reflektierenden Spiegeln gefangenes Atom verrät seine Position über die Aussendung einzelner Photonen (gelbe Wellenpakete). Diese Photonen werden in elektrische Pulse umgewandelt (gelbe Kügelchen), die von einer Regelungselektronik in Echtzeit ausgewertet werden. Der resultierende elektrische Strom (blaue Kügelchen) wiederum reguliert die Intensität eines blauen Lasers (blaue \"Mulde\"). Dieser Regelkreis \"schaukelt\" das Atom in Abhängigkeit von seiner jeweils gemessenen Position. MPQ-Abteilung Quantendynamik

Das System reagiert in Echtzeit auf die Bewegung eines Atoms in einem optischen Resonator. Einzelne von dem Atom ausgesandte Photonen, die Information über seinen Ort tragen, setzen einen Rückkopplungsmechanismus in Gang, der das Atom in eine vom Experimentator gewünschte Richtung stößt. Durch diese gezielte Steuerung des Atoms kann seine Verweildauer in dem Resonator auf das Vierfache gesteigert werden. Fast noch wichtiger aber ist der Umstand, dass die Methode ein Schritt in die Richtung ist, die Bewegung eines Atoms bis an die durch die Heisenbergsche Orts-Impuls-Unschärferelation gesetzte Grenze zu kontrollieren.

Das Experiment beginnt mit der Laserkühlung einer Wolke von neutralen Rubidiumatomen auf Temperaturen von einigen Mikrokelvin. Die kalte Wolke wird - wie ein Springbrunnen - in einen Resonator geschossen, der aus zwei Spiegeln höchster Güte im Abstand von ungefähr einem Zehntel Millimeter gebildet wird. Bei der Ankunft im Resonator wird ein einzelnes Atom durch das Einschalten einer "optischen Pinzette" eingefangen. So bezeichnen die Physiker die stehenden Lichtwellen, die von zwischen den Spiegeln reflektierten Laserstrahlen gebildet werden. Da das Atom extrem empfindlich auf kleinste Kräfte reagiert, wird seine regelmäßige Schwingung um die Resonatorachse von einer willkürlichen, in beliebige Richtungen weisenden Bewegung überlagert. Das verhindert es, seine Bahn auf Zeitskalen, die länger als die Schwingungsperiode (typischerweise weniger als eine tausendstel Sekunde) sind, vorherzusagen.

Nun kommt ein zweiter Laser ins Spiel, dessen Licht als Eingangssignal für die Rückkopplungsschleife dient. Mit diesem Laser ist es möglich, die Bewegung des Atoms zu verfolgen. Befindet sich kein Atom im Resonator, dann wird dieses Laserlicht durch beide Spiegel voll durchgelassen. Falls sich das Atom genau in der Mitte des Resonators aufhält, wird das Licht abgeblockt, und die Photonenrate sinkt auf 0,03 Photonen in einer Millionstel Sekunde. Entfernt sich das Atom vom Zentrum in dem Versuch, den Resonator zu verlassen, dann wird mehr Licht durchgelassen. D.h. die jeweilige Änderung der Position des Atoms ist an der Intensität des durchgelassenen Lichtes abzulesen. Um diese Information zu erhalten, wird die Zahl der aus dem Resonator kommenden Photonen in zwei aufeinander folgenden, gleich lange Zeitintervallen, der sogenannten Belichtungszeit, mit empfindlichen Nachweisgeräten registriert.

Wenn im zweiten Zeitabschnitt mehr Photonen registriert werden als im ersten, folgt daraus, dass das Atom im Begriff ist, den Resonator zu verlassen. Um dies zu verhindern, wird die Lichtintensität der optischen Pinzette hochgefahren, was das Atom zurück zur Resonatorachse treibt. Sinkt dagegen die Photonenzahl im zweiten Zeitabschnitt, dann wird angenommen, dass sich das Atom der Achse nähert, und die Intensität der Pinzetten wird heruntergefahren. Dieses Vorgehen verringert die Bewegungsenergie des Atoms und führt zu seiner effizienten Kühlung. Durch Umkehrung der Rückkopplungslogik kann das Atom auch aus dem Resonator heraus getrieben werden. "Es muss betont werden, dass der Rückkopplungsmechanismus von jedem einzelnen registrierten Photon ausgelöst wird", erklärt Alexander Kubanek, Doktorand in der Abteilung Quantendynamik. "Sobald die Zahl von 0 auf 1 steigt, wird die Intensität der optischen Pinzette sofort hochgefahren, und zwar in einer Zeitspanne, die etwa 70 mal kürzer ist als die Schwingungsperiode des Atoms. Aber wir müssen aufpassen, dass die Belichtungszeiten weder zu kurz noch zu lang sind. Sie müssen lang genug sein, um Informationen über die Position des Atoms zu liefern, aber dennoch viel kürzer als die Schwingungsperiode des Atoms in der optischen Pinzette."

Der Rückkopplungsmechanismus steigert die Speicherzeit für ein einzelnes Atom von etwa sechs Millisekunden (ohne Feedback) auf etwa 24 Millisekunden. Mit einer etwas verfeinerten Technik wurden sogar Speicherzeiten von bis zu 250 Millisekunden erreicht. Aber noch wichtiger als die Verlängerung der Speicherzeit sind die quantenmechanischen Implikationen des Experimentes. "Es beweist, dass sich durch quasi-kontinuierliche Messungen verlässliche Aussagen über den Ort des Atoms machen lassen", betont Prof. Gerhard Rempe. "Das könnte es in Zukunft ermöglichen, individuelle Quantenbahnen mit einer Genauigkeit zu steuern, die nur noch durch Heisenbergs Unschärfe-Relation begrenzt ist, oder den Quantenzustand eines gefangenen Atoms gegen den verhängnisvollen Einfluss von Fluktuationen aus der unmittelbaren Umgebung zu schützen." [Olivia Meyer-Streng]

Originalveröffentlichung:
A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, P.W.H. Pinkse, K. Murr, G. Rempe
Photon-by-photon feedback control of a single-atom trajectory
Nature, N° 2009-08-10110A, DOI 10.1038/nature08563, 17.12.2009
Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 (0)89 / 32905 - 701
Fax: +49 (0)89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Alexander Kubanek
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0)89 / 32905 - 296
Fax: +49 (0)89 / 32905 - 395
E-Mail: alexander.kubanek@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0)89 / 32905 - 213
Fax: +49 (0)89 / 32905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie