Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schaukeln eines Atoms

17.12.2009
Optoelektronische Rückkopplung stabilisiert die Bahn eines einzelnen Atoms in Echtzeit.

Wenn ein Vater sein Kind auf einer Schaukel zum Schwingen bringt, werden komplexe Rückkopplungsmechanismen wirksam: sobald sich die Schaukel ihm nähert, stößt der Vater sie genau zum richtigen Zeitpunkt mit der richtigen Kraft an. Ganz ähnlich funktioniert die schnelle Rückkopplungslogik, die ein Team um Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik in Garching bei München entwickelt hat (Nature, N° 2009-08-10110A, DOI: 10.1038/nature08563).


Visualisierung des Regelkreises: Ein einzelnes, zwischen zwei hoch reflektierenden Spiegeln gefangenes Atom verrät seine Position über die Aussendung einzelner Photonen (gelbe Wellenpakete). Diese Photonen werden in elektrische Pulse umgewandelt (gelbe Kügelchen), die von einer Regelungselektronik in Echtzeit ausgewertet werden. Der resultierende elektrische Strom (blaue Kügelchen) wiederum reguliert die Intensität eines blauen Lasers (blaue \"Mulde\"). Dieser Regelkreis \"schaukelt\" das Atom in Abhängigkeit von seiner jeweils gemessenen Position. MPQ-Abteilung Quantendynamik

Das System reagiert in Echtzeit auf die Bewegung eines Atoms in einem optischen Resonator. Einzelne von dem Atom ausgesandte Photonen, die Information über seinen Ort tragen, setzen einen Rückkopplungsmechanismus in Gang, der das Atom in eine vom Experimentator gewünschte Richtung stößt. Durch diese gezielte Steuerung des Atoms kann seine Verweildauer in dem Resonator auf das Vierfache gesteigert werden. Fast noch wichtiger aber ist der Umstand, dass die Methode ein Schritt in die Richtung ist, die Bewegung eines Atoms bis an die durch die Heisenbergsche Orts-Impuls-Unschärferelation gesetzte Grenze zu kontrollieren.

Das Experiment beginnt mit der Laserkühlung einer Wolke von neutralen Rubidiumatomen auf Temperaturen von einigen Mikrokelvin. Die kalte Wolke wird - wie ein Springbrunnen - in einen Resonator geschossen, der aus zwei Spiegeln höchster Güte im Abstand von ungefähr einem Zehntel Millimeter gebildet wird. Bei der Ankunft im Resonator wird ein einzelnes Atom durch das Einschalten einer "optischen Pinzette" eingefangen. So bezeichnen die Physiker die stehenden Lichtwellen, die von zwischen den Spiegeln reflektierten Laserstrahlen gebildet werden. Da das Atom extrem empfindlich auf kleinste Kräfte reagiert, wird seine regelmäßige Schwingung um die Resonatorachse von einer willkürlichen, in beliebige Richtungen weisenden Bewegung überlagert. Das verhindert es, seine Bahn auf Zeitskalen, die länger als die Schwingungsperiode (typischerweise weniger als eine tausendstel Sekunde) sind, vorherzusagen.

Nun kommt ein zweiter Laser ins Spiel, dessen Licht als Eingangssignal für die Rückkopplungsschleife dient. Mit diesem Laser ist es möglich, die Bewegung des Atoms zu verfolgen. Befindet sich kein Atom im Resonator, dann wird dieses Laserlicht durch beide Spiegel voll durchgelassen. Falls sich das Atom genau in der Mitte des Resonators aufhält, wird das Licht abgeblockt, und die Photonenrate sinkt auf 0,03 Photonen in einer Millionstel Sekunde. Entfernt sich das Atom vom Zentrum in dem Versuch, den Resonator zu verlassen, dann wird mehr Licht durchgelassen. D.h. die jeweilige Änderung der Position des Atoms ist an der Intensität des durchgelassenen Lichtes abzulesen. Um diese Information zu erhalten, wird die Zahl der aus dem Resonator kommenden Photonen in zwei aufeinander folgenden, gleich lange Zeitintervallen, der sogenannten Belichtungszeit, mit empfindlichen Nachweisgeräten registriert.

Wenn im zweiten Zeitabschnitt mehr Photonen registriert werden als im ersten, folgt daraus, dass das Atom im Begriff ist, den Resonator zu verlassen. Um dies zu verhindern, wird die Lichtintensität der optischen Pinzette hochgefahren, was das Atom zurück zur Resonatorachse treibt. Sinkt dagegen die Photonenzahl im zweiten Zeitabschnitt, dann wird angenommen, dass sich das Atom der Achse nähert, und die Intensität der Pinzetten wird heruntergefahren. Dieses Vorgehen verringert die Bewegungsenergie des Atoms und führt zu seiner effizienten Kühlung. Durch Umkehrung der Rückkopplungslogik kann das Atom auch aus dem Resonator heraus getrieben werden. "Es muss betont werden, dass der Rückkopplungsmechanismus von jedem einzelnen registrierten Photon ausgelöst wird", erklärt Alexander Kubanek, Doktorand in der Abteilung Quantendynamik. "Sobald die Zahl von 0 auf 1 steigt, wird die Intensität der optischen Pinzette sofort hochgefahren, und zwar in einer Zeitspanne, die etwa 70 mal kürzer ist als die Schwingungsperiode des Atoms. Aber wir müssen aufpassen, dass die Belichtungszeiten weder zu kurz noch zu lang sind. Sie müssen lang genug sein, um Informationen über die Position des Atoms zu liefern, aber dennoch viel kürzer als die Schwingungsperiode des Atoms in der optischen Pinzette."

Der Rückkopplungsmechanismus steigert die Speicherzeit für ein einzelnes Atom von etwa sechs Millisekunden (ohne Feedback) auf etwa 24 Millisekunden. Mit einer etwas verfeinerten Technik wurden sogar Speicherzeiten von bis zu 250 Millisekunden erreicht. Aber noch wichtiger als die Verlängerung der Speicherzeit sind die quantenmechanischen Implikationen des Experimentes. "Es beweist, dass sich durch quasi-kontinuierliche Messungen verlässliche Aussagen über den Ort des Atoms machen lassen", betont Prof. Gerhard Rempe. "Das könnte es in Zukunft ermöglichen, individuelle Quantenbahnen mit einer Genauigkeit zu steuern, die nur noch durch Heisenbergs Unschärfe-Relation begrenzt ist, oder den Quantenzustand eines gefangenen Atoms gegen den verhängnisvollen Einfluss von Fluktuationen aus der unmittelbaren Umgebung zu schützen." [Olivia Meyer-Streng]

Originalveröffentlichung:
A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, P.W.H. Pinkse, K. Murr, G. Rempe
Photon-by-photon feedback control of a single-atom trajectory
Nature, N° 2009-08-10110A, DOI 10.1038/nature08563, 17.12.2009
Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 (0)89 / 32905 - 701
Fax: +49 (0)89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Alexander Kubanek
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0)89 / 32905 - 296
Fax: +49 (0)89 / 32905 - 395
E-Mail: alexander.kubanek@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0)89 / 32905 - 213
Fax: +49 (0)89 / 32905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics