Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schaukeln eines Atoms

17.12.2009
Optoelektronische Rückkopplung stabilisiert die Bahn eines einzelnen Atoms in Echtzeit.

Wenn ein Vater sein Kind auf einer Schaukel zum Schwingen bringt, werden komplexe Rückkopplungsmechanismen wirksam: sobald sich die Schaukel ihm nähert, stößt der Vater sie genau zum richtigen Zeitpunkt mit der richtigen Kraft an. Ganz ähnlich funktioniert die schnelle Rückkopplungslogik, die ein Team um Prof. Gerhard Rempe am Max-Planck-Institut für Quantenoptik in Garching bei München entwickelt hat (Nature, N° 2009-08-10110A, DOI: 10.1038/nature08563).


Visualisierung des Regelkreises: Ein einzelnes, zwischen zwei hoch reflektierenden Spiegeln gefangenes Atom verrät seine Position über die Aussendung einzelner Photonen (gelbe Wellenpakete). Diese Photonen werden in elektrische Pulse umgewandelt (gelbe Kügelchen), die von einer Regelungselektronik in Echtzeit ausgewertet werden. Der resultierende elektrische Strom (blaue Kügelchen) wiederum reguliert die Intensität eines blauen Lasers (blaue \"Mulde\"). Dieser Regelkreis \"schaukelt\" das Atom in Abhängigkeit von seiner jeweils gemessenen Position. MPQ-Abteilung Quantendynamik

Das System reagiert in Echtzeit auf die Bewegung eines Atoms in einem optischen Resonator. Einzelne von dem Atom ausgesandte Photonen, die Information über seinen Ort tragen, setzen einen Rückkopplungsmechanismus in Gang, der das Atom in eine vom Experimentator gewünschte Richtung stößt. Durch diese gezielte Steuerung des Atoms kann seine Verweildauer in dem Resonator auf das Vierfache gesteigert werden. Fast noch wichtiger aber ist der Umstand, dass die Methode ein Schritt in die Richtung ist, die Bewegung eines Atoms bis an die durch die Heisenbergsche Orts-Impuls-Unschärferelation gesetzte Grenze zu kontrollieren.

Das Experiment beginnt mit der Laserkühlung einer Wolke von neutralen Rubidiumatomen auf Temperaturen von einigen Mikrokelvin. Die kalte Wolke wird - wie ein Springbrunnen - in einen Resonator geschossen, der aus zwei Spiegeln höchster Güte im Abstand von ungefähr einem Zehntel Millimeter gebildet wird. Bei der Ankunft im Resonator wird ein einzelnes Atom durch das Einschalten einer "optischen Pinzette" eingefangen. So bezeichnen die Physiker die stehenden Lichtwellen, die von zwischen den Spiegeln reflektierten Laserstrahlen gebildet werden. Da das Atom extrem empfindlich auf kleinste Kräfte reagiert, wird seine regelmäßige Schwingung um die Resonatorachse von einer willkürlichen, in beliebige Richtungen weisenden Bewegung überlagert. Das verhindert es, seine Bahn auf Zeitskalen, die länger als die Schwingungsperiode (typischerweise weniger als eine tausendstel Sekunde) sind, vorherzusagen.

Nun kommt ein zweiter Laser ins Spiel, dessen Licht als Eingangssignal für die Rückkopplungsschleife dient. Mit diesem Laser ist es möglich, die Bewegung des Atoms zu verfolgen. Befindet sich kein Atom im Resonator, dann wird dieses Laserlicht durch beide Spiegel voll durchgelassen. Falls sich das Atom genau in der Mitte des Resonators aufhält, wird das Licht abgeblockt, und die Photonenrate sinkt auf 0,03 Photonen in einer Millionstel Sekunde. Entfernt sich das Atom vom Zentrum in dem Versuch, den Resonator zu verlassen, dann wird mehr Licht durchgelassen. D.h. die jeweilige Änderung der Position des Atoms ist an der Intensität des durchgelassenen Lichtes abzulesen. Um diese Information zu erhalten, wird die Zahl der aus dem Resonator kommenden Photonen in zwei aufeinander folgenden, gleich lange Zeitintervallen, der sogenannten Belichtungszeit, mit empfindlichen Nachweisgeräten registriert.

Wenn im zweiten Zeitabschnitt mehr Photonen registriert werden als im ersten, folgt daraus, dass das Atom im Begriff ist, den Resonator zu verlassen. Um dies zu verhindern, wird die Lichtintensität der optischen Pinzette hochgefahren, was das Atom zurück zur Resonatorachse treibt. Sinkt dagegen die Photonenzahl im zweiten Zeitabschnitt, dann wird angenommen, dass sich das Atom der Achse nähert, und die Intensität der Pinzetten wird heruntergefahren. Dieses Vorgehen verringert die Bewegungsenergie des Atoms und führt zu seiner effizienten Kühlung. Durch Umkehrung der Rückkopplungslogik kann das Atom auch aus dem Resonator heraus getrieben werden. "Es muss betont werden, dass der Rückkopplungsmechanismus von jedem einzelnen registrierten Photon ausgelöst wird", erklärt Alexander Kubanek, Doktorand in der Abteilung Quantendynamik. "Sobald die Zahl von 0 auf 1 steigt, wird die Intensität der optischen Pinzette sofort hochgefahren, und zwar in einer Zeitspanne, die etwa 70 mal kürzer ist als die Schwingungsperiode des Atoms. Aber wir müssen aufpassen, dass die Belichtungszeiten weder zu kurz noch zu lang sind. Sie müssen lang genug sein, um Informationen über die Position des Atoms zu liefern, aber dennoch viel kürzer als die Schwingungsperiode des Atoms in der optischen Pinzette."

Der Rückkopplungsmechanismus steigert die Speicherzeit für ein einzelnes Atom von etwa sechs Millisekunden (ohne Feedback) auf etwa 24 Millisekunden. Mit einer etwas verfeinerten Technik wurden sogar Speicherzeiten von bis zu 250 Millisekunden erreicht. Aber noch wichtiger als die Verlängerung der Speicherzeit sind die quantenmechanischen Implikationen des Experimentes. "Es beweist, dass sich durch quasi-kontinuierliche Messungen verlässliche Aussagen über den Ort des Atoms machen lassen", betont Prof. Gerhard Rempe. "Das könnte es in Zukunft ermöglichen, individuelle Quantenbahnen mit einer Genauigkeit zu steuern, die nur noch durch Heisenbergs Unschärfe-Relation begrenzt ist, oder den Quantenzustand eines gefangenen Atoms gegen den verhängnisvollen Einfluss von Fluktuationen aus der unmittelbaren Umgebung zu schützen." [Olivia Meyer-Streng]

Originalveröffentlichung:
A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, P.W.H. Pinkse, K. Murr, G. Rempe
Photon-by-photon feedback control of a single-atom trajectory
Nature, N° 2009-08-10110A, DOI 10.1038/nature08563, 17.12.2009
Kontakt:
Prof. Dr. Gerhard Rempe
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 (0)89 / 32905 - 701
Fax: +49 (0)89 / 32905 - 311
E-Mail: gerhard.rempe@mpq.mpg.de
Alexander Kubanek
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0)89 / 32905 - 296
Fax: +49 (0)89 / 32905 - 395
E-Mail: alexander.kubanek@mpq.mpg.de
Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0)89 / 32905 - 213
Fax: +49 (0)89 / 32905 - 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie