Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Scharfer Blick in die Welt der ultraschnellen Prozesse

15.03.2017

Viele technologisch wichtige Prozesse, etwa in der Energie- und Datenspeicherung, dauern nur so kurze Zeit, dass sie sich eine Billiarde Mal wiederholen müssten, bis eine Sekunde vergangen ist. Wenn Wissenschaftler solche Vorgänge untersuchen, sprechen sie von „Femtosekunden-Physik“ und von „ultraschnellen Prozessen“. Forscher des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) haben nun mit Kollegen aus Hamburg, Berlin und Kalifornien demonstriert, wie sich diese ultraschnellen Abläufe mittels präziser Messungen und einer innovativen Datenanalyse viel genauer als bisher untersuchen lassen.

Der technologische Fortschritt macht es möglich, wichtige Vorgänge in den Material- und Lebenswissenschaften zu „filmen“, um sie besser zu verstehen. Die relevanten Zeitskalen sind hier oft Billiardstel Bruchteile einer Sekunde (Femtosekunden), weshalb das Aufnehmen solcher Hochgeschwindigkeitsfilme immer noch eine große Herausforderung darstellt.


Die Terahertz-Quelle TELBE ist wegen ihrer hohen Wiederholrate derzeit ein gefragtes Testfeld für Forscher, um Diagnostik an im Aufbau befindlichen Röntgen- und Freie-Elektronen-Lasern zu entwickeln.

HZDR / F. Bierstedt

Zum Vergleich: Ein Lichtstrahl braucht für die rund 380.000 Kilometer von der Erde zum Mond etwa eine Sekunde. In einer Femtosekunde legt solch ein Lichtpaket nur eine Distanz zurück, die dem Durchmesser eines menschlichen Haares entspricht.

Um sehr schnelle Prozesse zu „fotografieren“ beziehungsweise zu „filmen“, verwenden Forscher Laser und zunehmend Lichtquellen auf Beschleunigerbasis wie Freie-Elektronen-Laser, die sehr kurze Lichtteilchen-Pulse erzeugen. Auch die neue Forschungsanlage „TELBE“ am Elektronen-Beschleuniger ELBE des HZDR ist prinzipiell zu solchen Messungen imstande. Sie ist ein Prototyp für eine neue Generation von Lichtquellen, die starke Lichtpulse im Terahertz-Bereich mit besonders hoher Wiederholrate erzeugen.

Doch die Lichtintensität und Ankunftszeiten verfügbarer Strahlenquellen in Großforschungsanlagen wie dem ELBE-Zentrum für Hochleistungs-Strahlenquellen des HZDR oder dem leistungsstärksten Röntgenlaser der Welt, dem europäischen XFEL, schwanken zu stark, um viele der erhofften Untersuchungen zu realisieren.

Anstatt wie bisher zu versuchen, die Stabilität des Elektronen-Beschleunigers ELBE am HZDR zu verbessern oder Messungen mit „schlechten“ Pulseigenschaften auszusortieren, haben die beteiligten Wissenschaftler nun ein Verfahren entwickelt, um die Intensität, die Ankunftszeit und weitere Eigenschaften jedes einzelnen Pulses von diesen Lichtquellen mit hochempfindlichen Monitoren sehr präzise auszumessen. Diese Aufzeichnungen über die ursprünglichen Messimpulse ordnen sie dann den Experimentdaten zu.

Die Unregelmäßigkeiten in den Lichtteilchen-Paketen sind damit nicht mehr eine Störung des Experiments, sondern liefern wertvolle Zusatzinformationen, beispielsweise darüber, wie sich die Proben unter unterschiedlichen Bestrahlungsstärken verhalten.

„Für uns gibt es keine schlechten Daten mehr, alle Messungen sind jetzt gleichermaßen wertvoll – unabhängig von der Schwankung zum Beispiel in der Ankunftszeit der Lichtpulse im Experiment oder ihrer Intensität“, erklärt Dr. Michael Gensch, der mit seiner HZDR-Arbeitsgruppe die Entwicklung vorangetrieben hatte.

Herausforderung „Big Data“
„Wir nutzen dafür die enormen Fortschritte der Computertechnik“, betont der Strahlrohr-Wissenschaftler Sergey Kovalev von der TELBE-Anlage. „Was wir jetzt machen, auf diese Idee wäre vor ein paar Jahren noch niemand gekommen, weil dabei enorm große Datenmengen entstehen und verarbeitet werden müssen.“ Insofern könne man auch von einer „Big Data“-Herausforderung sprechen: Binnen zwei Wochen Messzeit können schon ein halbes Petabyte an Experimentaldaten entstehen. Dies entspricht etwa dem Inhalt von rund 55.000 DVDs.

Doch das ist erst der Anfang: Das bisher verwendete Detektorsystem, das die Werte sammelt, kann Wiederholraten bis zu 100 Kilohertz – 100.000 Messwerte pro Sekunde – verarbeiten. Kooperationspartner am Deutschen Elektronen-Synchrotron DESY in Hamburg, am Karlsruher Institut für Technologie KIT und am Paul-Scherer-Institut in der Schweiz arbeiten bereits an einer Detektor-Sonderanfertigung, die 45-mal so schnell sein wird, also mit viereinhalb Megahertz klar kommt.

Entsprechend stark wachsen dann die Mengen erzeugter Experimental-Rohdaten. „Da sind auch noch viele Fragen zu beantworten: Wie und wann man diese Daten auswertet, wie man sie abspeichert und für die Nutzer verfügbar macht“, schätzt Gensch ein. „Bis zum nächsten Jahr wollen wir einen Aufbau entwickeln, der für den europäischen Röntgenlaser XFEL geeignet ist. Bis dahin wollen wir diese Fragen soweit wie möglich geklärt haben.“

Das Verfahren, entwickelt im Rahmen des europäischen Projektverbunds EUCALL, funktioniert momentan bis auf 30 Femtosekunden genau. Es kann aber prinzipiell noch weiter verbessert werden, wie die Forscher in ihrer Studie beschreiben. Beteiligt an der Entwicklung des neuen Verfahrens waren neben dem HZDR Wissenschaftler des Deutschen Elektronen Synchrotrons DESY in Hamburg, des Fritz-Haber-Instituts der Max-Planck Gesellschaft in Berlin sowie des SLAC National Accelerator Laboratory in Menlo Park/USA.

Beschrieben und publiziert haben sie ihre Befunde nun unter dem Titel „Probing ultra-fast processes with high dynamic range at 4th-generation light sources“ in der Fachzeitschrift „Structural Dynamics“. Dabei handelt es sich um eine Zeitung für die Ultra-Kurzzeit Wissenschaft, die frei zugänglich im Internet steht, also das „Open Access“-Prinzip verfolgt.

Informationen zum EUCALL-Projekt
Das europäische Cluster für fortgeschrittene Laserlichtquellen (European Cluster of Advanced Laser Light Sources = EUCALL) ist ein Netzwerk führender Großforschungseinrichtungen für Freie-Elektronen-Laser, Synchrotron-Speicherringe und Laserstrahlung sowie ihre Nutzer. EUCALL wird durch das „Horizon 2020“-Forschungsprogramm der Europäischen Union finanziert. Es umfasst elf Partner aus neun Ländern sowie die Netzwerke Laserlab Europe und FELs Europas während der Projektperiode 2015 bis 2018.
www.eucall.eu

Publikation:
S. Kovalev, B. Green, T. Golz, S. Maehrlein, N. Stojanovic, A. S. Fisher, T. Kampfrath, M. Gensch: Probing ultra-fast processes with high dynamic range at 4th-generation light sources: Arrival time and intensity binning at unprecedented repetition rates, in Structural Dynamics, 2017, 4, pp 10159–10165 (DOI: 10.1063/1.4978042)

Weitere Informationen:
Dr. Michael Gensch
Institut für Strahlenphysik am HZDR
Tel. +49 351 260-2464
E-Mail: m.gensch@hzdr.de

Medienkontakt:
Simon Schmitt | Wissenschaftsredakteur
Tel. +49 351 260-3400 | E-Mail: s.schmitt@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden | www.hzdr.de

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Zur Beantwortung dieser wissenschaftlichen Fragen betreibt das HZDR große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, hat fünf Standorte (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

https://www.hzdr.de/presse/prozesse_femtowelt

Simon Schmitt | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie