Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schall macht Licht

31.05.2010
Weltpremiere: PTB-Forscher übertragen eine höchststabile Frequenz über eine 480 km lange Glasfaserstrecke – Vergleich von optischen Uhren wird viel einfacher

Soll Licht als Übermittler von Nachrichten dienen, dann kann man auf die bewährten Instrumente der Nachrichtentechnik zurückgreifen: Modulierte Lichtsignale wandern durch Glasfaserstrecken mit zwischengeschalteten Verstärkerstationen, die die durch Dämpfung schwächer gewordenen Lichtsignale wieder „auffrischen“. Schwieriger wird es, wenn das Licht selbst – genauer: seine Frequenz – die Nachricht ist und wenn diese Nachricht mit einer extremen Genauigkeit übertragen werden soll. Dabei geraten konventionelle Verstärker an ihre Grenzen. Eine dreiköpfige Forschergruppe in der Physikalisch-Technischen Bundesanstalt (PTB) hat hier nun die Lösung gefunden: Sie nutzen stimulierte Brillouin-Streuung. Das heißt, sie schicken dem Signal-Licht sogenanntes Pump-Licht mit genau definierter Frequenz entgegen, das in der Glasfaser akustische Wellen (im Teilchenbild: Phononen) anregt. An diesen akustischen Phononen wird wiederum das Pump-Licht gestreut, wobei die wenigen schon vorhandenen Signal-Photonen die Emission weiterer Signal-Photonen stimulieren. So entsteht eine mittels Schallwellen in Gang gehaltene Photonen-Lawine, die die Frequenz-Information mit extrem geringen Verlusten bis ans andere Ende der Glasfaser bringt.


Über Glasfasern können Frequenzen jetzt mit bisher unerreichter Genauigkeit weitergegeben werden. (Foto: GasLINE)

Auf einer Glasfaserstrecke von 480 km Länge haben die PTB-Forscher dies bereits nachgewiesen. Die relative Messunsicherheit, die sie erreichten, entspricht einer Sekunde in 16 Milliarden Jahren. Jetzt sollen noch längere Glasfaserstrecken folgen. Die neue Technik vereinfacht den Vergleich von neu entwickelten optischen Uhren, deren hohe Frequenzstabilität mit den üblichen Verfahren der Zeit- und Frequenzübertragung über Satelliten schwer zu fassen ist. Aber auch aus der Geodäsie sind schon Interessenten an die PTB-Forscher herangetreten. Und selbst Anwendungen in der Radioastronomie erscheinen sinnvoll.

Die PTB-Physiker Harald Schnatz und Gesine Grosche sind seit Jahren international führend bei der präzisen Messung und Übertragung von Frequenzen per Glasfaser. Dabei ist die Frequenz des Lichtes selber die Information: konkret etwa 195 • 1012 Schwingungen pro Sekunde. Eine erste Anwendung der noch jungen Technik war letztes Jahr die Fern-Messung des sogenannten optischen Uhrenübergangs in einer Magnesium-Uhr der Leibniz Universität Hannover. Die Wissenschaftler ermittelten jene charakteristische Frequenz, mit der die Atome im Magnesium angeregt werden können und die daher im Prinzip zur „Erzeugung“ von Sekunden genutzt werden kann – alles via 73 km Glasfaser von der PTB aus. „Bei diesen Messungen stehen an beiden Enden Femtosekunden-Frequenzkammgeneratoren, die eine feste Phasenbeziehung zwischen dem übertragenen Licht und den Frequenzstandards vor Ort herstellen“, erklärt Harald Schnatz. Die Frequenzstandards vor Ort sind die neue Magnesium-Uhr in Hannover und eine optische Uhr in der PTB. Die unterschiedlichen Frequenzen der beiden werden mit Hilfe der Femtosekunden-Frequenzkammgeneratoren synchronisiert, was man mit einem Getriebe vergleichen könnte. Schnatz fügt hinzu: „Wir waren anfangs selbst überrascht, wie gut dieses Gesamtsystem funktioniert.“ Nun wollten die Forscher größere Distanzen überbrücken und für gemeinsame Experimente eine Verbindung bis zum Max-Planck-Institut für Quantenoptik (MPQ) in Garching herstellen – eine Strecke von 900 km Glasfaser, die das Licht, falls man es nicht verstärkt, um den unvorstellbaren Faktor von 1020 abschwächt. Die Glasfaser muss dabei sogar zweimal durchlaufen werden, weil sie Teil eines riesigen Interferometers ist; damit wird die gesamte Glasfaserstrecke in ihrer optischen Länge stabilisiert. Konventionelle Verstärkertechniken stoßen dabei an ihre Grenzen. „Unser Doktorand Osama Terra hatte die zündende Idee, Brillouin-Verstärkung in der Glasfaser selbst zu nutzen“, sagt Gesine Grosche: „Das bringt uns gleich mehrere Vorteile: Erstens werden damit auch sehr schwache Signale noch verstärkt; die Signalleistung wird um einen Faktor bis zu einer Million vervielfacht. So benötigen wir wesentlich weniger Verstärkerstationen. Außerdem lassen sich gezielt sehr schmalbandige Lichtsignale verstärken.“ Das ist sehr günstig für die Untersuchung der schmalbandigen Uhrenübergänge von optischen Uhren.

Das Konzept hat die Gruppe sofort auf einer verlegten Glasfaserstrecke getestet: in Kooperation mit dem Deutschen Forschungsnetz (www.dfn.de) und der Firma GasLINE, die ein deutschlandweites Glasfasernetz betreiben. Mit nur einer Verstärker-Zwischenstation kam die hochstabile Frequenz auf einen Streckenrekord von 480 km Glasfaser – und das mit einer relativen Genauigkeit von 2 Teilen in 1018, was etwa einer Abweichung von einer Sekunde in 16 Milliarden Jahren entspricht. Damit erscheint nun selbst eine Verbindung zum französischen Partnerinstitut der PTB in Paris realistisch, um vielleicht in Zukunft gemeinsam an den besten Uhren zu arbeiten.

Bei der Fachkonferenz „European Time and Frequency Forum“ (EFTF) fanden die Arbeiten dann auch Anerkennung: Osama Terra gewann den Student Award der EFTF für seine Arbeit im Bereich „Timekeeping, Time and Frequency Transfer“. Die Ergebnisse sind zur Veröffentlichung eingereicht und auf dem Preprint-Server „arXiv“ verfügbar. Zurzeit arbeiten die drei Forscher und ihre Kollegen am MPQ Garching fieberhaft weiter an der Verbindung zwischen ihren Instituten. Sie wollen die hochstabile Referenzfrequenz der PTB bis in das Labor der Arbeitsgruppe von Professor Theodor Hänsch tragen, wo elementare Eigenschaften des Wasserstoffatoms höchstpräzise spektroskopisch gemessen werden.

Für die Zukunft suchen Gesine Grosche und Harald Schnatz Verstärkung anderer Art: Postdocs und Doktoranden, die sich zutrauen, in diesem aktiven Forschungsfeld mitzuarbeiten. Interessenten sollten per E-Mail Kontakt mit gesine.grosche@ptb.de aufnehmen. Angehende Doktoranden können sich dann – bis Mitte Juli – mit dem Stichwort „Faserlink“ im laufenden HALOSTAR-Programm (www.halostar.de) online bewerben. ptb/es

Ansprechpartnerin:
Dr. Gesine Grosche, PTB-Arbeitsgruppe 4.31 Längeneinheit, Tel. (0531) 592-4318, E-Mail: gesine.grosche@ptb.de
Originalveröffentlichungen dazu:
Terra, O.; Grosche, G.; Schnatz, H.: Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber. arXiv:1005.3925v1. http://arxiv.org/abs/1005.3925

Grosche, G; Terra, O; Predehl, K; Holzwarth, R; Lipphardt, B; Vogt, F; Sterr, U; Schnatz, H.: Optical frequency transfer via 146 km fiber link with 10−19 relative accuracy. Optics Letters, Vol. 34 Issue 15, pp.2270-2272 (2009)

Erika Schow | PTB
Weitere Informationen:
http://arxiv.org/abs/1005.3925
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Magma sucht sich nach Flankenkollaps neue Wege

23.10.2017 | Geowissenschaften

Neues Sensorsystem sorgt für sichere Ernte

23.10.2017 | Informationstechnologie

Salmonellen als Medikament gegen Tumore

23.10.2017 | Biowissenschaften Chemie