Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schall macht Licht

31.05.2010
Weltpremiere: PTB-Forscher übertragen eine höchststabile Frequenz über eine 480 km lange Glasfaserstrecke – Vergleich von optischen Uhren wird viel einfacher

Soll Licht als Übermittler von Nachrichten dienen, dann kann man auf die bewährten Instrumente der Nachrichtentechnik zurückgreifen: Modulierte Lichtsignale wandern durch Glasfaserstrecken mit zwischengeschalteten Verstärkerstationen, die die durch Dämpfung schwächer gewordenen Lichtsignale wieder „auffrischen“. Schwieriger wird es, wenn das Licht selbst – genauer: seine Frequenz – die Nachricht ist und wenn diese Nachricht mit einer extremen Genauigkeit übertragen werden soll. Dabei geraten konventionelle Verstärker an ihre Grenzen. Eine dreiköpfige Forschergruppe in der Physikalisch-Technischen Bundesanstalt (PTB) hat hier nun die Lösung gefunden: Sie nutzen stimulierte Brillouin-Streuung. Das heißt, sie schicken dem Signal-Licht sogenanntes Pump-Licht mit genau definierter Frequenz entgegen, das in der Glasfaser akustische Wellen (im Teilchenbild: Phononen) anregt. An diesen akustischen Phononen wird wiederum das Pump-Licht gestreut, wobei die wenigen schon vorhandenen Signal-Photonen die Emission weiterer Signal-Photonen stimulieren. So entsteht eine mittels Schallwellen in Gang gehaltene Photonen-Lawine, die die Frequenz-Information mit extrem geringen Verlusten bis ans andere Ende der Glasfaser bringt.


Über Glasfasern können Frequenzen jetzt mit bisher unerreichter Genauigkeit weitergegeben werden. (Foto: GasLINE)

Auf einer Glasfaserstrecke von 480 km Länge haben die PTB-Forscher dies bereits nachgewiesen. Die relative Messunsicherheit, die sie erreichten, entspricht einer Sekunde in 16 Milliarden Jahren. Jetzt sollen noch längere Glasfaserstrecken folgen. Die neue Technik vereinfacht den Vergleich von neu entwickelten optischen Uhren, deren hohe Frequenzstabilität mit den üblichen Verfahren der Zeit- und Frequenzübertragung über Satelliten schwer zu fassen ist. Aber auch aus der Geodäsie sind schon Interessenten an die PTB-Forscher herangetreten. Und selbst Anwendungen in der Radioastronomie erscheinen sinnvoll.

Die PTB-Physiker Harald Schnatz und Gesine Grosche sind seit Jahren international führend bei der präzisen Messung und Übertragung von Frequenzen per Glasfaser. Dabei ist die Frequenz des Lichtes selber die Information: konkret etwa 195 • 1012 Schwingungen pro Sekunde. Eine erste Anwendung der noch jungen Technik war letztes Jahr die Fern-Messung des sogenannten optischen Uhrenübergangs in einer Magnesium-Uhr der Leibniz Universität Hannover. Die Wissenschaftler ermittelten jene charakteristische Frequenz, mit der die Atome im Magnesium angeregt werden können und die daher im Prinzip zur „Erzeugung“ von Sekunden genutzt werden kann – alles via 73 km Glasfaser von der PTB aus. „Bei diesen Messungen stehen an beiden Enden Femtosekunden-Frequenzkammgeneratoren, die eine feste Phasenbeziehung zwischen dem übertragenen Licht und den Frequenzstandards vor Ort herstellen“, erklärt Harald Schnatz. Die Frequenzstandards vor Ort sind die neue Magnesium-Uhr in Hannover und eine optische Uhr in der PTB. Die unterschiedlichen Frequenzen der beiden werden mit Hilfe der Femtosekunden-Frequenzkammgeneratoren synchronisiert, was man mit einem Getriebe vergleichen könnte. Schnatz fügt hinzu: „Wir waren anfangs selbst überrascht, wie gut dieses Gesamtsystem funktioniert.“ Nun wollten die Forscher größere Distanzen überbrücken und für gemeinsame Experimente eine Verbindung bis zum Max-Planck-Institut für Quantenoptik (MPQ) in Garching herstellen – eine Strecke von 900 km Glasfaser, die das Licht, falls man es nicht verstärkt, um den unvorstellbaren Faktor von 1020 abschwächt. Die Glasfaser muss dabei sogar zweimal durchlaufen werden, weil sie Teil eines riesigen Interferometers ist; damit wird die gesamte Glasfaserstrecke in ihrer optischen Länge stabilisiert. Konventionelle Verstärkertechniken stoßen dabei an ihre Grenzen. „Unser Doktorand Osama Terra hatte die zündende Idee, Brillouin-Verstärkung in der Glasfaser selbst zu nutzen“, sagt Gesine Grosche: „Das bringt uns gleich mehrere Vorteile: Erstens werden damit auch sehr schwache Signale noch verstärkt; die Signalleistung wird um einen Faktor bis zu einer Million vervielfacht. So benötigen wir wesentlich weniger Verstärkerstationen. Außerdem lassen sich gezielt sehr schmalbandige Lichtsignale verstärken.“ Das ist sehr günstig für die Untersuchung der schmalbandigen Uhrenübergänge von optischen Uhren.

Das Konzept hat die Gruppe sofort auf einer verlegten Glasfaserstrecke getestet: in Kooperation mit dem Deutschen Forschungsnetz (www.dfn.de) und der Firma GasLINE, die ein deutschlandweites Glasfasernetz betreiben. Mit nur einer Verstärker-Zwischenstation kam die hochstabile Frequenz auf einen Streckenrekord von 480 km Glasfaser – und das mit einer relativen Genauigkeit von 2 Teilen in 1018, was etwa einer Abweichung von einer Sekunde in 16 Milliarden Jahren entspricht. Damit erscheint nun selbst eine Verbindung zum französischen Partnerinstitut der PTB in Paris realistisch, um vielleicht in Zukunft gemeinsam an den besten Uhren zu arbeiten.

Bei der Fachkonferenz „European Time and Frequency Forum“ (EFTF) fanden die Arbeiten dann auch Anerkennung: Osama Terra gewann den Student Award der EFTF für seine Arbeit im Bereich „Timekeeping, Time and Frequency Transfer“. Die Ergebnisse sind zur Veröffentlichung eingereicht und auf dem Preprint-Server „arXiv“ verfügbar. Zurzeit arbeiten die drei Forscher und ihre Kollegen am MPQ Garching fieberhaft weiter an der Verbindung zwischen ihren Instituten. Sie wollen die hochstabile Referenzfrequenz der PTB bis in das Labor der Arbeitsgruppe von Professor Theodor Hänsch tragen, wo elementare Eigenschaften des Wasserstoffatoms höchstpräzise spektroskopisch gemessen werden.

Für die Zukunft suchen Gesine Grosche und Harald Schnatz Verstärkung anderer Art: Postdocs und Doktoranden, die sich zutrauen, in diesem aktiven Forschungsfeld mitzuarbeiten. Interessenten sollten per E-Mail Kontakt mit gesine.grosche@ptb.de aufnehmen. Angehende Doktoranden können sich dann – bis Mitte Juli – mit dem Stichwort „Faserlink“ im laufenden HALOSTAR-Programm (www.halostar.de) online bewerben. ptb/es

Ansprechpartnerin:
Dr. Gesine Grosche, PTB-Arbeitsgruppe 4.31 Längeneinheit, Tel. (0531) 592-4318, E-Mail: gesine.grosche@ptb.de
Originalveröffentlichungen dazu:
Terra, O.; Grosche, G.; Schnatz, H.: Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber. arXiv:1005.3925v1. http://arxiv.org/abs/1005.3925

Grosche, G; Terra, O; Predehl, K; Holzwarth, R; Lipphardt, B; Vogt, F; Sterr, U; Schnatz, H.: Optical frequency transfer via 146 km fiber link with 10−19 relative accuracy. Optics Letters, Vol. 34 Issue 15, pp.2270-2272 (2009)

Erika Schow | PTB
Weitere Informationen:
http://arxiv.org/abs/1005.3925
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Hochspannung für den Teilchenbeschleuniger der Zukunft
24.05.2017 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochspannung für den Teilchenbeschleuniger der Zukunft

24.05.2017 | Physik Astronomie

3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind

24.05.2017 | Physik Astronomie

Optisches Messverfahren für Zellanalysen in Echtzeit - Ulmer Physiker auf der Messe "Sensor+Test"

24.05.2017 | Messenachrichten