Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schall macht Licht

31.05.2010
Weltpremiere: PTB-Forscher übertragen eine höchststabile Frequenz über eine 480 km lange Glasfaserstrecke – Vergleich von optischen Uhren wird viel einfacher

Soll Licht als Übermittler von Nachrichten dienen, dann kann man auf die bewährten Instrumente der Nachrichtentechnik zurückgreifen: Modulierte Lichtsignale wandern durch Glasfaserstrecken mit zwischengeschalteten Verstärkerstationen, die die durch Dämpfung schwächer gewordenen Lichtsignale wieder „auffrischen“. Schwieriger wird es, wenn das Licht selbst – genauer: seine Frequenz – die Nachricht ist und wenn diese Nachricht mit einer extremen Genauigkeit übertragen werden soll. Dabei geraten konventionelle Verstärker an ihre Grenzen. Eine dreiköpfige Forschergruppe in der Physikalisch-Technischen Bundesanstalt (PTB) hat hier nun die Lösung gefunden: Sie nutzen stimulierte Brillouin-Streuung. Das heißt, sie schicken dem Signal-Licht sogenanntes Pump-Licht mit genau definierter Frequenz entgegen, das in der Glasfaser akustische Wellen (im Teilchenbild: Phononen) anregt. An diesen akustischen Phononen wird wiederum das Pump-Licht gestreut, wobei die wenigen schon vorhandenen Signal-Photonen die Emission weiterer Signal-Photonen stimulieren. So entsteht eine mittels Schallwellen in Gang gehaltene Photonen-Lawine, die die Frequenz-Information mit extrem geringen Verlusten bis ans andere Ende der Glasfaser bringt.


Über Glasfasern können Frequenzen jetzt mit bisher unerreichter Genauigkeit weitergegeben werden. (Foto: GasLINE)

Auf einer Glasfaserstrecke von 480 km Länge haben die PTB-Forscher dies bereits nachgewiesen. Die relative Messunsicherheit, die sie erreichten, entspricht einer Sekunde in 16 Milliarden Jahren. Jetzt sollen noch längere Glasfaserstrecken folgen. Die neue Technik vereinfacht den Vergleich von neu entwickelten optischen Uhren, deren hohe Frequenzstabilität mit den üblichen Verfahren der Zeit- und Frequenzübertragung über Satelliten schwer zu fassen ist. Aber auch aus der Geodäsie sind schon Interessenten an die PTB-Forscher herangetreten. Und selbst Anwendungen in der Radioastronomie erscheinen sinnvoll.

Die PTB-Physiker Harald Schnatz und Gesine Grosche sind seit Jahren international führend bei der präzisen Messung und Übertragung von Frequenzen per Glasfaser. Dabei ist die Frequenz des Lichtes selber die Information: konkret etwa 195 • 1012 Schwingungen pro Sekunde. Eine erste Anwendung der noch jungen Technik war letztes Jahr die Fern-Messung des sogenannten optischen Uhrenübergangs in einer Magnesium-Uhr der Leibniz Universität Hannover. Die Wissenschaftler ermittelten jene charakteristische Frequenz, mit der die Atome im Magnesium angeregt werden können und die daher im Prinzip zur „Erzeugung“ von Sekunden genutzt werden kann – alles via 73 km Glasfaser von der PTB aus. „Bei diesen Messungen stehen an beiden Enden Femtosekunden-Frequenzkammgeneratoren, die eine feste Phasenbeziehung zwischen dem übertragenen Licht und den Frequenzstandards vor Ort herstellen“, erklärt Harald Schnatz. Die Frequenzstandards vor Ort sind die neue Magnesium-Uhr in Hannover und eine optische Uhr in der PTB. Die unterschiedlichen Frequenzen der beiden werden mit Hilfe der Femtosekunden-Frequenzkammgeneratoren synchronisiert, was man mit einem Getriebe vergleichen könnte. Schnatz fügt hinzu: „Wir waren anfangs selbst überrascht, wie gut dieses Gesamtsystem funktioniert.“ Nun wollten die Forscher größere Distanzen überbrücken und für gemeinsame Experimente eine Verbindung bis zum Max-Planck-Institut für Quantenoptik (MPQ) in Garching herstellen – eine Strecke von 900 km Glasfaser, die das Licht, falls man es nicht verstärkt, um den unvorstellbaren Faktor von 1020 abschwächt. Die Glasfaser muss dabei sogar zweimal durchlaufen werden, weil sie Teil eines riesigen Interferometers ist; damit wird die gesamte Glasfaserstrecke in ihrer optischen Länge stabilisiert. Konventionelle Verstärkertechniken stoßen dabei an ihre Grenzen. „Unser Doktorand Osama Terra hatte die zündende Idee, Brillouin-Verstärkung in der Glasfaser selbst zu nutzen“, sagt Gesine Grosche: „Das bringt uns gleich mehrere Vorteile: Erstens werden damit auch sehr schwache Signale noch verstärkt; die Signalleistung wird um einen Faktor bis zu einer Million vervielfacht. So benötigen wir wesentlich weniger Verstärkerstationen. Außerdem lassen sich gezielt sehr schmalbandige Lichtsignale verstärken.“ Das ist sehr günstig für die Untersuchung der schmalbandigen Uhrenübergänge von optischen Uhren.

Das Konzept hat die Gruppe sofort auf einer verlegten Glasfaserstrecke getestet: in Kooperation mit dem Deutschen Forschungsnetz (www.dfn.de) und der Firma GasLINE, die ein deutschlandweites Glasfasernetz betreiben. Mit nur einer Verstärker-Zwischenstation kam die hochstabile Frequenz auf einen Streckenrekord von 480 km Glasfaser – und das mit einer relativen Genauigkeit von 2 Teilen in 1018, was etwa einer Abweichung von einer Sekunde in 16 Milliarden Jahren entspricht. Damit erscheint nun selbst eine Verbindung zum französischen Partnerinstitut der PTB in Paris realistisch, um vielleicht in Zukunft gemeinsam an den besten Uhren zu arbeiten.

Bei der Fachkonferenz „European Time and Frequency Forum“ (EFTF) fanden die Arbeiten dann auch Anerkennung: Osama Terra gewann den Student Award der EFTF für seine Arbeit im Bereich „Timekeeping, Time and Frequency Transfer“. Die Ergebnisse sind zur Veröffentlichung eingereicht und auf dem Preprint-Server „arXiv“ verfügbar. Zurzeit arbeiten die drei Forscher und ihre Kollegen am MPQ Garching fieberhaft weiter an der Verbindung zwischen ihren Instituten. Sie wollen die hochstabile Referenzfrequenz der PTB bis in das Labor der Arbeitsgruppe von Professor Theodor Hänsch tragen, wo elementare Eigenschaften des Wasserstoffatoms höchstpräzise spektroskopisch gemessen werden.

Für die Zukunft suchen Gesine Grosche und Harald Schnatz Verstärkung anderer Art: Postdocs und Doktoranden, die sich zutrauen, in diesem aktiven Forschungsfeld mitzuarbeiten. Interessenten sollten per E-Mail Kontakt mit gesine.grosche@ptb.de aufnehmen. Angehende Doktoranden können sich dann – bis Mitte Juli – mit dem Stichwort „Faserlink“ im laufenden HALOSTAR-Programm (www.halostar.de) online bewerben. ptb/es

Ansprechpartnerin:
Dr. Gesine Grosche, PTB-Arbeitsgruppe 4.31 Längeneinheit, Tel. (0531) 592-4318, E-Mail: gesine.grosche@ptb.de
Originalveröffentlichungen dazu:
Terra, O.; Grosche, G.; Schnatz, H.: Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber. arXiv:1005.3925v1. http://arxiv.org/abs/1005.3925

Grosche, G; Terra, O; Predehl, K; Holzwarth, R; Lipphardt, B; Vogt, F; Sterr, U; Schnatz, H.: Optical frequency transfer via 146 km fiber link with 10−19 relative accuracy. Optics Letters, Vol. 34 Issue 15, pp.2270-2272 (2009)

Erika Schow | PTB
Weitere Informationen:
http://arxiv.org/abs/1005.3925
http://www.ptb.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie