Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenstrahlung auf krummen Wegen

11.11.2015

Physiker der Universität Göttingen entwickeln Röntgen-Lichtleiter mit großen Ablenkungswinkeln

Röntgenstrahlen besitzen eine nur geringe Wechselwirkung mit der sie umgebenden Materie. Sie durchdringen die meisten Grenzflächen und Körper ohne nennenswerte Abweichung von ihrem geraden Weg.


(a) Gemessene Intensitätsverteilung in Falschfarbendarstellung entlang der Ablenkrichtung.

Rot/pink entspricht etwa 1.000.000 Photonen pro Detektorpixel, blau/gelb etwa 20-100 Photonen.

(b) Geometrie des Experimentes, bei dem ein miniaturisierter Kanal in einer Metallschicht als Röntgenlichtleiter wirkt. Der Strahl breitet sich entlang des gekrümmten Kanals aus und kann so in seiner Richtung verändert werden. Die Kanalbreite beträgt 1/10.000 Millimeter.

(c) Computersimulation der Strahlausbreitung im Kanal mit charakteristischer Modenstruktur.

Grafik: Tim Salditt, Universität Göttingen / A. Rehfeldt, az-design

Gleichzeitig fehlen aber auch geeignete Mittel, um einen Röntgenstrahl auch auf krumme Wege zu leiten, beispielsweise damit er sich in eine andere Richtung ausbreitet, oder um den Strahl zu einer bestimmten Stelle zu transportieren. Forscher am Institut für Röntgenphysik der Universität Göttingen haben nun gezeigt, dass sich auch Röntgenlicht durch gekrümmte Richtlichtleiter „um die Ecke“ führen lässt.

Die Ergebnisse sind in der Fachzeitschrift Physical Review Letters erschienen.

Bislang gingen Forscher davon aus, dass ein sogenannter kritischer Winkel mit materialabhängigen Werten im Bereich von wenigen hundertstel Grad die möglichen Ablenkungswinkel begrenzt. „In unserem Experiment mit hochbrillanter Röntgenstrahlung am Hamburger Elektronensynchrotron (DESY) und der Europäischen Synchrotronstrahlungsquelle in Grenoble konnten wir das Röntgenlicht in einem fünf Millimeter langen Lichtleiter mit Ablenkungswinkeln von bis zu 30 Grad ,transportieren‘, weit mehr, als man für viele neue Anwendungen bräuchte“, erklärt Prof. Dr. Tim Salditt vom Institut für Röntgenphysik der Universität Göttingen.

Ohne Lichtleiter kommen viele Anwendungen heute besonders in der medizinischen Bildgebung und für industrielle Prüfverfahren nicht mehr aus: ob Endoskopie in der Medizin, interferometrische Vermessung von Objekten, Telekommunikation oder quantenoptische Grundlagenexperimente.

„Unsere Röntgen-Lichtleiter bestehen aus winzigen, luftgefüllten Kanälen in einer Metallschicht, die auf einem Siliziumchip aufgebracht wurde“, so Prof. Salditt. „Die Röntgenstrahlung wurde dabei in die offene Stirnseite der Kanäle eingekoppelt und breitete sich entlang der auf Kreislinien angeordneten Kanäle aus. Die Funktionsweise dieser Wellenleiter beruht auf der speziellen Anpassung des Lichtes auf die gekrümmte Kanalform.“

So gehen die Autoren davon aus, dass man mit solchen Kanälen in Zukunft kurze Röntgenpulse teilen und wieder zusammenführen könnte, um zum Beispiel die Pulsdauer von Röntgenlasern zu vermessen, deren Blitze kürzer als eine Billionstel Sekunde leuchten. Auch holografische Röntgenabbildungen mit mehreren Teilstrahlen ließen sich durch Nutzung dieser Lichtleiter realisieren.

Originalveröffentlichung: Tim Salditt et al. X-ray optics on a chip: Guiding x rays in curved channels. Physical Review Letters. http://dx.doi.org/10.1103/PhysRevLett.115.203902.

Kontaktadresse:
Prof. Dr. Tim Salditt
Georg-August-Universität Göttingen
Fakultät für Physik – Institut für Röntgenphysik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-9427 / -5556 (Sekretariat)
E-Mail: tsaldit@gwdg.de
Internet: http://www.roentgen.physik.uni-goettingen.de

Weitere Informationen:

http://www.uni-goettingen.de/de/3240.html?cid=5332 Fotos zum Thema

Thomas Richter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle
07.12.2016 | Goethe-Universität Frankfurt am Main

nachricht Das Universum enthält weniger Materie als gedacht
07.12.2016 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Das Universum enthält weniger Materie als gedacht

07.12.2016 | Physik Astronomie

Partnerschaft auf Abstand: tiefgekühlte Helium-Moleküle

07.12.2016 | Physik Astronomie

Bakterien aus dem Blut «ziehen»

07.12.2016 | Biowissenschaften Chemie