Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Röntgenstrahlung auf krummen Wegen

11.11.2015

Physiker der Universität Göttingen entwickeln Röntgen-Lichtleiter mit großen Ablenkungswinkeln

Röntgenstrahlen besitzen eine nur geringe Wechselwirkung mit der sie umgebenden Materie. Sie durchdringen die meisten Grenzflächen und Körper ohne nennenswerte Abweichung von ihrem geraden Weg.


(a) Gemessene Intensitätsverteilung in Falschfarbendarstellung entlang der Ablenkrichtung.

Rot/pink entspricht etwa 1.000.000 Photonen pro Detektorpixel, blau/gelb etwa 20-100 Photonen.

(b) Geometrie des Experimentes, bei dem ein miniaturisierter Kanal in einer Metallschicht als Röntgenlichtleiter wirkt. Der Strahl breitet sich entlang des gekrümmten Kanals aus und kann so in seiner Richtung verändert werden. Die Kanalbreite beträgt 1/10.000 Millimeter.

(c) Computersimulation der Strahlausbreitung im Kanal mit charakteristischer Modenstruktur.

Grafik: Tim Salditt, Universität Göttingen / A. Rehfeldt, az-design

Gleichzeitig fehlen aber auch geeignete Mittel, um einen Röntgenstrahl auch auf krumme Wege zu leiten, beispielsweise damit er sich in eine andere Richtung ausbreitet, oder um den Strahl zu einer bestimmten Stelle zu transportieren. Forscher am Institut für Röntgenphysik der Universität Göttingen haben nun gezeigt, dass sich auch Röntgenlicht durch gekrümmte Richtlichtleiter „um die Ecke“ führen lässt.

Die Ergebnisse sind in der Fachzeitschrift Physical Review Letters erschienen.

Bislang gingen Forscher davon aus, dass ein sogenannter kritischer Winkel mit materialabhängigen Werten im Bereich von wenigen hundertstel Grad die möglichen Ablenkungswinkel begrenzt. „In unserem Experiment mit hochbrillanter Röntgenstrahlung am Hamburger Elektronensynchrotron (DESY) und der Europäischen Synchrotronstrahlungsquelle in Grenoble konnten wir das Röntgenlicht in einem fünf Millimeter langen Lichtleiter mit Ablenkungswinkeln von bis zu 30 Grad ,transportieren‘, weit mehr, als man für viele neue Anwendungen bräuchte“, erklärt Prof. Dr. Tim Salditt vom Institut für Röntgenphysik der Universität Göttingen.

Ohne Lichtleiter kommen viele Anwendungen heute besonders in der medizinischen Bildgebung und für industrielle Prüfverfahren nicht mehr aus: ob Endoskopie in der Medizin, interferometrische Vermessung von Objekten, Telekommunikation oder quantenoptische Grundlagenexperimente.

„Unsere Röntgen-Lichtleiter bestehen aus winzigen, luftgefüllten Kanälen in einer Metallschicht, die auf einem Siliziumchip aufgebracht wurde“, so Prof. Salditt. „Die Röntgenstrahlung wurde dabei in die offene Stirnseite der Kanäle eingekoppelt und breitete sich entlang der auf Kreislinien angeordneten Kanäle aus. Die Funktionsweise dieser Wellenleiter beruht auf der speziellen Anpassung des Lichtes auf die gekrümmte Kanalform.“

So gehen die Autoren davon aus, dass man mit solchen Kanälen in Zukunft kurze Röntgenpulse teilen und wieder zusammenführen könnte, um zum Beispiel die Pulsdauer von Röntgenlasern zu vermessen, deren Blitze kürzer als eine Billionstel Sekunde leuchten. Auch holografische Röntgenabbildungen mit mehreren Teilstrahlen ließen sich durch Nutzung dieser Lichtleiter realisieren.

Originalveröffentlichung: Tim Salditt et al. X-ray optics on a chip: Guiding x rays in curved channels. Physical Review Letters. http://dx.doi.org/10.1103/PhysRevLett.115.203902.

Kontaktadresse:
Prof. Dr. Tim Salditt
Georg-August-Universität Göttingen
Fakultät für Physik – Institut für Röntgenphysik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon (0551) 39-9427 / -5556 (Sekretariat)
E-Mail: tsaldit@gwdg.de
Internet: http://www.roentgen.physik.uni-goettingen.de

Weitere Informationen:

http://www.uni-goettingen.de/de/3240.html?cid=5332 Fotos zum Thema

Thomas Richter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten