Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenwellen berechenbar machen - Forschungsprojekt zu Wellenform und Strömungen für Tsunami-Frühwarnsysteme

19.08.2010
Seeleute schließen anhand der Form einer Welle auf die Stärke der Strömung unterhalb der Wasseroberfläche.

Was unter erfahrenen Schiffskapitänen als gesichert gilt, will Adrian Constantin, Professor für Mathematik an der Universität Wien, nun mit Hilfe der Wissenschaft beweisen: Im Rahmen des vom Wiener Wissenschafts-, Forschungs- und Technologiefonds (WWTF) geförderten Projekts "Der Fluss unter einer Wasserwelle" untersucht er den Einfluss von Strömungen auf den Wellengang sowie die mathematische Berechenbarkeit von Wasserwellen. Die Forschungsergebnisse könnten in Tsunami-Frühwarnsysteme einfließen.

Was unterscheidet die Mathematik von der Physik? Während die Mathematik selbst geschaffene Strukturen auf ihre Eigenschaften erforscht, sucht die Physik mit Hilfe der Mathematik nach allgemeinen Naturgesetzen. Adrian Constantin, der sich selbst als "reinen Mathematiker" bezeichnet, begibt sich auf fremdes Terrain: Der Professor am Institut für Mathematik der Universität Wien untersucht mathematische Modelle für Wasserwellen und Strömungen. In dem vierjährigen WWTF-Projekt "Der Fluss unter einer Wasserwelle" erforscht er den Einfluss von Strömungen auf die Wasseroberfläche. "Fischersleute behaupten, dass Strömungen die Größe der Wellen verdoppeln können. Die größte Herausforderung wird es sein, diese Aussage zu beweisen."

Wenn das Wasser zurückgeht

Anlass für das kürzlich gestartete Forschungsprojekt war der verheerende Tsunami 2004 mit über 230.000 Toten. Vieles in Zusammenhang mit den Riesenwellen ist bis heute unklar. So auch, warum in Thailand das Wasser zurückgegangen war bevor die Welle kam, während in Indien die Welle ohne Vorwarnung die Küste überrollte. "Auf Satellitenbildern sehen wir die Welle kurz nach ihrer Entstehung durch das Erdbeben: Der Welle Richtung Thailand ging ein langes Wassertal voraus, während sich die Welle Richtung Indien umgekehrt verhielt", schildert Constantin.

Gefahr an flachen Stränden

Demnach bestimmt die Form der Welle bereits zu Beginn deren Verhalten beim Auftreffen auf die Küste. Damit verbunden ist die Frage, wie viele Tsunamiwellen die Küste erreichen. Die Mathematik zeigt, dass dies mit dem Profil der Welle kurz nach deren Entstehung zusammenhängt: "Die Anzahl der Wellen an der Küste ist kleiner gleich der Wellenanzahl zu Beginn – das heißt kurz nach der Entstehung der Welle durch das Erdbeben." Die Höhe der Wellen kann hingegen nur geschätzt werden, da sie mit dem – meist sehr komplexen – Profil des Meeresbodens zusammenhängt.

Ist die Beschaffenheit der Wasseroberfläche kurz nach dem Entstehen der Tsunamiwelle bekannt, kann somit eine Aussage über die Welle an der Küste getroffen werden. "An flachen Küsten sind Tsunamiwellen besonders gefährlich, während an Steilküsten nichts passiert, da hier die Welle einfach reflektiert wird. Die Geschwindigkeit der Welle ist proportional zur Quadratwurzel der Tiefe", erklärt Constantin.

Druck am Meeresboden

Für den Hobbytaucher Constantin ist vor allem der Druck in der Tiefe des Ozeans von Interesse. "Der Druck am Meeresboden sagt etwas über die Wasseroberfläche aus: Wenn der höchste Punkt der Welle über der Stelle liegt, an der der Druck gemessen wird, wächst der Druck. Wenn der tiefste Punkt der Welle darüber liegt, fällt er", beschreibt der Mathematiker.

Daten aus dem Wellenkanal

Ob die mathematischen Modelle des Forschungsteams in der Natur zutreffen, erfährt Constantin über Rücksprache mit WissenschafterInnen am Franzius-Institut für Wasserbau und Küsteningenieurwesen der Universität Hannover: "Wir arbeiten mit KüsteningenieurInnen zusammen, die an der Städteplanung für tsunamigefährdete Gebiete in Südostasien beteiligt sind und somit über sehr viel Datenmaterial im Bereich von Tsunamis verfügen." Außerdem befindet sich in Hannover der längste Wellenkanal der Welt, den Constantin und sein Team für Experimente nutzen.

Kontakt
Univ.-Prof. Adrian Constantin, PhD
Institut für Mathematik
Universität Wien
1090 Wien, Nordbergstraße 15
T +43-1-4277-506 35
adrian.constantin@univie.ac.at
Rückfragehinweis
Mag. Alexander Dworzak
Öffentlichkeitsarbeit
Universität Wien
1010 Wien, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 31
alexander.dworzak@univie.ac.at

Alexander Dworzak | idw
Weitere Informationen:
http://public.univie.ac.at
http://plone.mat.univie.ac.at

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie