Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rekord in der Hochdruckforschung: 1 Terapascal erstmals erreicht und überschritten

21.07.2016

Einem internationalen Forschungsteam um Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky von der Universität Bayreuth ist es erstmals gelungen, im Labor einen Druck von 1 Terapascal (= 1.000.000.000.000 Pascal) zu erzeugen. Dieser Druck ist dreimal höher als der Druck, der im Zentrum der Erde herrscht. Die in 'Science Advances' veröffentlichte Studie eröffnet neue Forschungsmöglichkeiten für die Physik und Chemie der Festkörper, die Materialwissenschaft, die Geophysik und die Astrophysik.

Extreme Drücke und Temperaturen, die im Labor mit hoher Präzision erzeugt und kontrolliert werden, sind ideale Voraussetzungen für die Physik, Chemie und Materialforschung. Sie ermöglichen es, Strukturen und Eigenschaften von Materialien aufzuklären, neue Materialien für industrielle Anwendungen zu synthetisieren, neue Materiezustände zu entdecken, zu einem vertieften Verständnis von Materie vorzudringen und damit beispielsweise Einblicke in den Aufbau und die Dynamik der Erde sowie anderer Planeten zu gewinnen. Daher besteht weltweit ein starkes Forschungsinteresse daran, die im Labor erzeugten und für Materialanalysen genutzten Drücke immer weiter zu steigern.


Nachdem ein kugelförmiger nanokristalliner Diamant in zwei Halbkugeln getrennt worden ist, werden die Halbkugeln für den Einsatz in einer doppelseitigen Diamantstempelzelle vorbereitet.

Elektronenmikroskopische Aufnahme: Leonid Dubrovinsky und Natalia Dubrovinskaia; zur Veröffentlichung frei.

Als ‚magische Grenze‘ galt bisher die Marke von 1 Terapascal (= 1.000.000.000.000 Pascal). Das sind 1 Billion Pascal, im Englischen: 1 trillion pascal. Dieser Druck ist dreimal höher als der Druck, der im Zentrum der Erde herrscht. Zum Vergleich: Dieser Druck würde auf einer Fingerspitze lasten, wenn man darauf 100 Exemplare des Eiffelturms übereinander stapeln könnte.

Eben diese Grenze hat ein internationales Forschungsteam um Prof. Dr. Natalia Dubrovinskaia und Prof. Dr. Leonid Dubrovinsky von der Universität Bayreuth jetzt erstmals erreicht und überschritten. Wie den Wissenschaftlern dieser Rekord gelungen ist, darüber berichten sie im Forschungsmagazin ‚Science Advances‘.

Internationale Forschungskooperation

An der jetzt veröffentlichten Studie waren zusammen mit dem Bayerischen Geoinstitut (BGI) und dem Labor für Kristallographie der Universität Bayreuth zahlreiche weitere Forschungspartner beteiligt: das Center for Advanced Radiation Sources an der Universität Chicago, die European Synchrotron Radiation Facility in Grenoble, die Universität Antwerpen, das Karlsruher Institut für Technologie (KIT) sowie die Baltische Föderale Immanuel-Kant-Universität in Kaliningrad. Entscheidende Experimente wurden von den Bayreuther Wissenschaftlern am Argonne National Laboratory, einem Forschungsinstitut des US-Energieministeriums in Chicago, durchgeführt.

Im Labor synthetisiert: Superharte Diamant-Kugeln

Es sind kugelförmige nanokristalline Diamanten, mit denen jetzt die Tür in eine neue Dimension der Materialforschung aufgestoßen wurde. Wissenschaftler an der Universität Bayreuth hatten die durchsichtigen Kugeln, die einen Durchmesser zwischen 10 und 20 Mikrometern aufweisen, im Labor synthetisiert. Wie sich herausstellte, besitzen sie aufgrund ihres einzigartigen Gefüges eine ganz ungewöhnliche Druckfestigkeit. Sie erweisen sich als höchst widerstandsfähig, wenn äußere Drücke auf sie einwirken.

Diese Eigenschaft haben die Mitglieder der Forschungsgruppe mit dem Ziel genutzt, für materialwissenschaftliche Experimente einen Druck von mehr als 1 Terapascal zu erzeugen. Mit einer Ionenfeinstrahlanlage haben sie die superharten Diamant-Kugeln zunächst in zwei Halbkugeln getrennt. Diese Hälften wurden anschließend in einer doppelseitigen Diamantstempelzelle installiert. Während die dazwischen eingezwängten Materialproben steigenden Drücken ausgesetzt waren, wurden sie an der Elektronensynchrotron-Anlage in Chicago mit Röntgenstrahlen durchleuchtet. Die Beugungsmuster, die aus diesen technologisch sehr anspruchsvollen Untersuchungen hervorgingen, brachten es an den Tag: Die Grenze von 1 Terapascal war erreicht und überschritten.

In der Diamantstempelzelle: Materialproben unter Höchstdruck

Diamantstempelzellen als solche kommen in der Hochdruck- und Hochtemperaturforschung schon seit langem zum Einsatz: Dabei wird die Probe des zu untersuchenden Materials zwischen zwei Diamanten platziert. Diese Diamanten pressen die Materialprobe aus entgegensetzten Richtungen zusammen, wobei Drücke bis zu etwa 250 Gigapascal entstehen können.

Am Bayerischen Geoinstitut (BGI) und am Labor für Kristallographie der Universität Bayreuth wurde diese Forschungstechnik schon vor wenigen Jahren entscheidend weiterentwickelt. Die hier konstruierten doppelseitigen Diamantstempelzellen ermöglichen die Erzeugung von viel höheren Drücken. Denn in diesen Zellen wird auf jedem der beiden Diamanten ein halber nanokristalliner Diamant befestigt. Die Köpfe dieser Halbkugeln stehen exakt einander gegenüber. So können sie die extremen Drücke, die von außen seitens der größeren Diamanten auf sie ausgeübt werden, an die zwischen ihnen befindliche Materialprobe weitergeben – und zwar ohne dabei zerstört zu werden.

Die Pointe dieses zweistufigen Verfahrens liegt darin, dass der an die Materialprobe weitergegebene Druck vervielfacht wird. Denn die Köpfe der Halbkugeln, welche die Materialprobe berühren, haben eine wesentlich kleinere Fläche als ihre kreisförmigen Unterflächen, mit denen sie an den größeren Diamanten befestigt sind.

Eine wesentliche Ursache für die Druckfestigkeit von nanokristallinen Diamanten ist ihre Korngröße. Bei den nanokristallinen Diamanten, mit denen in zweistufigen Zellen jetzt erstmals ein Kompressionsdruck von mehr als 1 Terapascal erzeugt werden konnte, liegt sie zwischen 2 und 15 Nanometern.

Untersuchungen auch an flüssigen oder gasförmigen Proben

Die jetzt veröffentlichten Forschungsergebnisse eröffnen aber nicht allein wegen der Überschreitung von 1 Terapascal neue Möglichkeiten für die physikalische, chemische und geowissenschaftliche Materialforschung. Spezielle Dichtungen, welche die Wissenschaftler in den doppelseitigen Diamantstempelzellen installiert haben, bilden wesentliche Voraussetzungen dafür, dass nicht nur Festkörper, sondern auch Materialproben in ursprünglich flüssigem oder gasförmigem Zustand bei Drücken von über 1 Terapascal analysiert werden können.

Weitere Forschungsperspektiven

„Wir freuen uns sehr darüber, dass es uns zusammen mit unseren Forschungspartnern gelungen ist, die internationale Hochdruck- und Hochtemperaturforschung in dieser Weise voranzubringen“, erklärt Prof. Dr. Natalia Dubrovinskaia. Die jetzt veröffentlichten Forschungsergebnisse seien für zahlreiche Forschungszweige von erheblicher Relevanz, insbesondere für die Physik und Chemie der Festkörper, die Materialwissenschaft, die Geophysik und die Astrophysik. Ebenso könne die Industrie davon profitieren, beispielsweise wenn es um die Entwicklung neuer Wasserstofftechnologien oder hochleistungsfähiger Supraleiter geht.

Vom 4. bis 9. September 2016 wird die European High Pressure Research Group (EHPRG), die europäische Fachgesellschaft für Hochdruckforschung, an der Universität Bayreuth zu ihrer 54. Jahrestagung zusammenkommen. „Auch hier werden die neuen Forschungsmöglichkeiten natürlich ein Thema sein“, so Prof. Dubrovinskaia.

Forschungsförderung

In Deutschland wurden die Forschungsarbeiten von der Deutschen Forschungsgemeinschaft (DFG) sowie als Projekt der Verbundforschung vom Bundesministerium für Bildung und Forschung (BMBF) gefördert. Projekte der Verbundforschung beziehen Universitäten in die Entwicklung und den Aufbau innovativer Methoden und Instrumente für große Forschungseinrichtungen ein. Dadurch wird es möglich, die herausragenden Kompetenzen von Hochschulen und außeruniversitären Forschungseinrichtungen zu verknüpfen und durch Synergie-Effekte weiter zu stärken.

Weitere Bilder in hoher Auflösung zum Download

http://www.uni-bayreuth.de/de/universitaet/presse/pressemitteilungen/2016/116-re...

Veröffentlichung

Natalia Dubrovinskaia, Leonid Dubrovinsky et al.,
Terapascal Static Pressure Generation with Ultrahigh Yield Strength Nanodiamond,
Science Advances, 20 July 2016.
DOI: 10.1126/sciadv.1600341

Kontakte

Prof. Dr. Natalia Dubrovinskaia
Laboratorium für Kristallographie
Universität Bayreuth
D-95440 Bayreuth
Natalia.Dubrovinskaia@uni-bayreuth.de
Telefon: +49 (0)921-55 3880 oder 3881

Prof. Dr. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
Universität Bayreuth
D-95440 Bayreuth
Leonid.Dubrovinsky@uni-bayreuth.de
Telefon: +49 (0)921-55 3736 oder 3707

Christian Wißler | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen