Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechnen mit Neodym

24.09.2013
Vielversprechender Kandidat für die Informationsverarbeitung mit magnetischen Molekülen

Magnetische Moleküle gelten als aussichtsreiche Schaltelemente für die Informationsverarbeitung der Zukunft. Ein interdisziplinäres Forscherteam aus Jülich und Aachen hat jetzt erstmals besonders robuste magnetische Moleküle hergestellt, deren magnetische Informationen sich auf direktem Weg elektrisch auslesen lassen.


Mit der wenige Atome großen Spitze eines Rastertunnelmikroskops (oben) leiteten die Forscher elektrischen Strom durch ein magnetisches Doppeldeckermolekül, das sie zuvor auf einer Kupferschicht platziert haben. Im Zentrum befindet sich ein Neodym-Atom (rot).

Forschungszentrum Jülich

Möglich wurde dies durch die Wahl des Selten-Erd-Metalls Neodym als zentralen Baustein des Moleküls. Die Forschungsergebnisse hat die renommierten Fachzeitschrift „Nature Communications“ heute online veröffentlicht (DOI: 10.1038/ncomms3425).

Die Verkleinerung von Prozessoren nähert sich zunehmend den physikalischen Grenzen. Gleichzeitig nimmt der weltweite Energieverbrauch durch die Informations- und Kommunikationstechnologie ständig zu und verlangt neue Ansätze, um das immer umfangreichere Datenaufkommen zu bewältigen. Einen Ausweg bieten magnetische Moleküle. Sie könnten die Rolle klassischer Elektronikbausteine wie Dioden oder Transistoren übernehmen. Im Gegensatz zu jenen lassen sie sich schon mit minimaler Spannung – und somit stark reduziertem Energieverbrauch – steuern und weisen wesentlich ausgefeiltere Schaltfunktionen auf, die vom Magnetismus der Moleküle abhängen.

Magnetische Moleküle fungieren wie winzige Magnete und können Informationen in Form von Stromsignalen verarbeiten. Die Zahl ihrer Atome ist stets gleich, und sie können funktionsspezifisch designt und preisgünstig in immer wieder identischer Form hergestellt werden. Um diese sogenannte „molekulare Spinelektronik“ technisch nutzen zu können, muss die magnetische Struktur der Moleküle gut abgeschirmt vor Umwelteinflüssen, gleichzeitig aber auch zugänglich für elektrischen Strom sein.

„Man könnte auch sagen, Strom und Magnetismus müssen miteinander kommunizieren können“, sagt Dr. Daniel Bürgler vom Forschungszentrum Jülich und der Jülich Aachen Research Alliance. Das Jülich-Aachener Team, dem der Physiker angehört, hat ein Molekül hergestellt, das diese Anforderungen erfüllt: „Bei Neodym-Phthalocyanin beteiligen sich dieselben Elektronen, die den Magnetismus erzeugen, auch am elektrischen Transport“, erläutert Bürgler. Dies konnten die Forscher durch den Vergleich simulierter Daten mit experimentellen Werten nachweisen.

Das Metall Neodym gehört zu den Seltenen Erden. Moleküle aus Selten-Erd-Atomen und Phthalocyaninen, die in der Natur als Blattfarbstoffe vorkommen, gelten als besonders stabil und schirmen den magnetischen Zustand der zentralen Selten-Erd-Atome gut ab. Bisher war es aber nicht gelungen, diese magnetischen Informationen direkt auf elektrischem Weg aus den Molekülen auszulesen. Denn die elektrische Kontaktierung dieser Moleküle führte bisher dazu, dass der elektrische Strom kaum von der magnetischen Struktur beeinflusst wurde.

Um ein geeignetes Selten-Erd-Atom zu identifizieren, hatten die Forscher die Verteilung der Elektronen analysiert, die die Atome wie eine Wolke umschwirren. Nur einige der Elektronen erzeugen die magnetische Struktur. Diese sollten tief genug in der Elektronenwolke liegen, um nicht von Umgebungseinflüssen beeinträchtigt zu werden. Gleichzeitig durften sie nicht so tief liegen, dass sie nicht mehr mit den Elektronen interagieren können, die den elektrischen Strom leiten. Genau diese Bedingungen erfüllt Neodym, weil es leichter ist als andere Lanthanoide und sich seine Elektronen in einer größeren Wolke verteilen.

Originalveröffentlichung:
Accessing 4f-states in single-molecule spintronics;
S. Fahrendorf et al.;
Nature Communications, published online 24 September 2013, DOI: 10.1038/ncomms3425

Weitere Informationen:

http://www.fz-juelich.de
- zur Pressemitteilung
http://www.jara.org/de/research/jara-fit/
- Jülich Aachen Research Alliance – Fundamentals of Future Information Technology
http://www.fz-juelich.de/pgi/pgi-6/DE/Home/home_node.html
- Peter Grünberg Institut – Elektronische Eigenschaften (PGI-6)
http://www.fz-juelich.de/pgi/pgi-1/DE/Home/
- Peter Grünberg Institut und Institute for Advanced Simulation - Quanten-Theorie der Materialien (PGI-1/IAS-1)
http://www.ac.rwth-aachen.de/extern/ak-koegerler/
- Institut für Anorganische Chemie – Molekularer Magnetismus
Ansprechpartner:
Dr. Daniel Bürgler, Forschungszentrum Jülich, Peter Grünberg Institut, Elektronische Eigenschaften (PGI-6), Tel 02461 61-4214, E-Mail: d.buergler@fz-juelich.de
Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall
22.08.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Im Neptun regnet es Diamanten: Forscherteam enthüllt Innenleben kosmischer Eisgiganten
21.08.2017 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler entdecken seltene Ordnung von Elektronen in einem supraleitenden Kristall

In einem Artikel der aktuellen Ausgabe des Forschungsmagazins „Nature“ berichten Wissenschaftler vom Max-Planck-Institut für Chemische Physik fester Stoffe in Dresden von der Entdeckung eines seltenen Materiezustandes, bei dem sich die Elektronen in einem Kristall gemeinsam in einer Richtung bewegen. Diese Entdeckung berührt eine der offenen Fragestellungen im Bereich der Festkörperphysik: Was passiert, wenn sich Elektronen gemeinsam im Kollektiv verhalten, in sogenannten „stark korrelierten Elektronensystemen“, und wie „einigen sich“ die Elektronen auf ein gemeinsames Verhalten?

In den meisten Metallen beeinflussen sich Elektronen gegenseitig nur wenig und leiten Wärme und elektrischen Strom weitgehend unabhängig voneinander durch das...

Im Focus: Wie ein Bakterium von Methanol leben kann

Bei einem Bakterium, das Methanol als Nährstoff nutzen kann, identifizierten ETH-Forscher alle dafür benötigten Gene. Die Erkenntnis hilft, diesen Rohstoff für die Biotechnologie besser nutzbar zu machen.

Viele Chemiker erforschen derzeit, wie man aus den kleinen Kohlenstoffverbindungen Methan und Methanol grössere Moleküle herstellt. Denn Methan kommt auf der...

Im Focus: Topologische Quantenzustände einfach aufspüren

Durch gezieltes Aufheizen von Quantenmaterie können exotische Materiezustände aufgespürt werden. Zu diesem überraschenden Ergebnis kommen Theoretische Physiker um Nathan Goldman (Brüssel) und Peter Zoller (Innsbruck) in einer aktuellen Arbeit im Fachmagazin Science Advances. Sie liefern damit ein universell einsetzbares Werkzeug für die Suche nach topologischen Quantenzuständen.

In der Physik existieren gewisse Größen nur als ganzzahlige Vielfache elementarer und unteilbarer Bestandteile. Wie das antike Konzept des Atoms bezeugt, ist...

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

International führende Informatiker in Paderborn

21.08.2017 | Veranstaltungen

Wissenschaftliche Grundlagen für eine erfolgreiche Klimapolitik

21.08.2017 | Veranstaltungen

DGI-Forum in Wittenberg: Fake News und Stimmungsmache im Netz

21.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer IPM präsentiert »Deep Learning Framework« zur automatisierten Interpretation von 3D-Daten

22.08.2017 | Informationstechnologie

Globale Klimaextreme nach Vulkanausbrüchen

22.08.2017 | Geowissenschaften

RWI/ISL-Containerumschlag-Index erreicht neuen Höchstwert

22.08.2017 | Wirtschaft Finanzen