Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rechnen mit Neodym

24.09.2013
Vielversprechender Kandidat für die Informationsverarbeitung mit magnetischen Molekülen

Magnetische Moleküle gelten als aussichtsreiche Schaltelemente für die Informationsverarbeitung der Zukunft. Ein interdisziplinäres Forscherteam aus Jülich und Aachen hat jetzt erstmals besonders robuste magnetische Moleküle hergestellt, deren magnetische Informationen sich auf direktem Weg elektrisch auslesen lassen.


Mit der wenige Atome großen Spitze eines Rastertunnelmikroskops (oben) leiteten die Forscher elektrischen Strom durch ein magnetisches Doppeldeckermolekül, das sie zuvor auf einer Kupferschicht platziert haben. Im Zentrum befindet sich ein Neodym-Atom (rot).

Forschungszentrum Jülich

Möglich wurde dies durch die Wahl des Selten-Erd-Metalls Neodym als zentralen Baustein des Moleküls. Die Forschungsergebnisse hat die renommierten Fachzeitschrift „Nature Communications“ heute online veröffentlicht (DOI: 10.1038/ncomms3425).

Die Verkleinerung von Prozessoren nähert sich zunehmend den physikalischen Grenzen. Gleichzeitig nimmt der weltweite Energieverbrauch durch die Informations- und Kommunikationstechnologie ständig zu und verlangt neue Ansätze, um das immer umfangreichere Datenaufkommen zu bewältigen. Einen Ausweg bieten magnetische Moleküle. Sie könnten die Rolle klassischer Elektronikbausteine wie Dioden oder Transistoren übernehmen. Im Gegensatz zu jenen lassen sie sich schon mit minimaler Spannung – und somit stark reduziertem Energieverbrauch – steuern und weisen wesentlich ausgefeiltere Schaltfunktionen auf, die vom Magnetismus der Moleküle abhängen.

Magnetische Moleküle fungieren wie winzige Magnete und können Informationen in Form von Stromsignalen verarbeiten. Die Zahl ihrer Atome ist stets gleich, und sie können funktionsspezifisch designt und preisgünstig in immer wieder identischer Form hergestellt werden. Um diese sogenannte „molekulare Spinelektronik“ technisch nutzen zu können, muss die magnetische Struktur der Moleküle gut abgeschirmt vor Umwelteinflüssen, gleichzeitig aber auch zugänglich für elektrischen Strom sein.

„Man könnte auch sagen, Strom und Magnetismus müssen miteinander kommunizieren können“, sagt Dr. Daniel Bürgler vom Forschungszentrum Jülich und der Jülich Aachen Research Alliance. Das Jülich-Aachener Team, dem der Physiker angehört, hat ein Molekül hergestellt, das diese Anforderungen erfüllt: „Bei Neodym-Phthalocyanin beteiligen sich dieselben Elektronen, die den Magnetismus erzeugen, auch am elektrischen Transport“, erläutert Bürgler. Dies konnten die Forscher durch den Vergleich simulierter Daten mit experimentellen Werten nachweisen.

Das Metall Neodym gehört zu den Seltenen Erden. Moleküle aus Selten-Erd-Atomen und Phthalocyaninen, die in der Natur als Blattfarbstoffe vorkommen, gelten als besonders stabil und schirmen den magnetischen Zustand der zentralen Selten-Erd-Atome gut ab. Bisher war es aber nicht gelungen, diese magnetischen Informationen direkt auf elektrischem Weg aus den Molekülen auszulesen. Denn die elektrische Kontaktierung dieser Moleküle führte bisher dazu, dass der elektrische Strom kaum von der magnetischen Struktur beeinflusst wurde.

Um ein geeignetes Selten-Erd-Atom zu identifizieren, hatten die Forscher die Verteilung der Elektronen analysiert, die die Atome wie eine Wolke umschwirren. Nur einige der Elektronen erzeugen die magnetische Struktur. Diese sollten tief genug in der Elektronenwolke liegen, um nicht von Umgebungseinflüssen beeinträchtigt zu werden. Gleichzeitig durften sie nicht so tief liegen, dass sie nicht mehr mit den Elektronen interagieren können, die den elektrischen Strom leiten. Genau diese Bedingungen erfüllt Neodym, weil es leichter ist als andere Lanthanoide und sich seine Elektronen in einer größeren Wolke verteilen.

Originalveröffentlichung:
Accessing 4f-states in single-molecule spintronics;
S. Fahrendorf et al.;
Nature Communications, published online 24 September 2013, DOI: 10.1038/ncomms3425

Weitere Informationen:

http://www.fz-juelich.de
- zur Pressemitteilung
http://www.jara.org/de/research/jara-fit/
- Jülich Aachen Research Alliance – Fundamentals of Future Information Technology
http://www.fz-juelich.de/pgi/pgi-6/DE/Home/home_node.html
- Peter Grünberg Institut – Elektronische Eigenschaften (PGI-6)
http://www.fz-juelich.de/pgi/pgi-1/DE/Home/
- Peter Grünberg Institut und Institute for Advanced Simulation - Quanten-Theorie der Materialien (PGI-1/IAS-1)
http://www.ac.rwth-aachen.de/extern/ak-koegerler/
- Institut für Anorganische Chemie – Molekularer Magnetismus
Ansprechpartner:
Dr. Daniel Bürgler, Forschungszentrum Jülich, Peter Grünberg Institut, Elektronische Eigenschaften (PGI-6), Tel 02461 61-4214, E-Mail: d.buergler@fz-juelich.de
Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich,
Tel. 02461 61-6048, E-Mail: a.wenzik@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie