Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reale Materialien aus dem Computer

17.03.2014

Physiker am Max-Planck-Institut für Eisenforschung können Eigenschaften von Werkstoffen und opto- und mikroelektronischen Halbleitermaterialien mit bisher unerreichbarer Genauigkeit vorhersagen.

Punktdefekte wie zum Beispiel das Fehlen einzelner Atome bestimmen maßgeblich die Leistungs- und Widerstandsfähigkeit moderner Materialien. Dabei spielt die Anzahl der Defekte eine wichtige Rolle.


Das Bild zeigt die atomare Verteilung in einem Kupfer-Kristall. Die grünen Bälle zeigen die Positionen der Atome am absoluten Nullpunkt. Der grau-gestrichelte Kreis in der Mitte ist eine sogenannte Leerstelle, eine Stelle bei der ein Atom in der Gitterstruktur fehlt. Bei höheren Temperaturen vibrieren die Atome aufgrund von Gitterschwingungen um ihre Position am absoluten Nullpunkt. Dies wird durch die schwarze Wolke angedeutet, die die Verteilung der Atome bei der Schmelztemperatur von Kupfer (1084 °C) zeigt.

Die Erkenntnisse der Max-Planck-Wissenschaftler über die Wechselwirkung zwischen den Gitterschwingungen und deren Temperaturabhängigkeit, zeigen nun eine deutlich andere Verteilung (orangene Wolken) auf. Bei steigender Temperatur vibrieren die Atome immer näher an der Leerstelle. Dies führt zu signifikanten Änderungen der Energie und Anzahl von Leerstellen und somit zu einer höheren Defektkonzentration und damit verbundenem Materialversagen.

Selbst geringste Defektkonzentrationen von 1:100.000 können maßgeblich die Widerstandsfähigkeit von mikroelektronischen Halbleitern, wie Prozessoren und Solarzellen, und Strukturmaterialien, wie Stahl, beeinflussen.

Hierbei bestehen alle Materialien aus Atomen, die im Falle von sogenannten kristallinen Materialien, in Gittern angeordnet sind . Die einzelnen Atome sitzen jedoch nicht perfekt auf den Gitterplätzen, sondern vibrieren mit extrem hohen Geschwindigkeit um diese Plätze - Wissenschaftler sprechen daher von Gitterschwingungen. 

Um Defekte in einem Material zu untersuchen und damit Rückschlüsse auf die Widerstandsfähigkeit zu ziehen, gab es bisher zwei Herangehensweisen. Theoretische Physiker berechneten die Energie der Gitterdefekte, eine Größe, die sehr genau zeigt wie viele Defekte im Material vorhanden sind; ihre Berechnungen funktionierten aber nur am sogenannten absoluten Nullpunkt, das heißt bei ca. -273°C (0 Kelvin).

Experimentelle Physiker dahingegen konnten im Gegensatz zu ihren theoretischen Kollegen anhand von Experimenten Defekte ausschließlich bei sehr hohen Temperaturen (327-727°C; 600-1000 Kelvin) messen. Es bestand also ein großes Temperaturintervall ohne jegliche Daten. Genau dieses fehlende Intervall ist aber wichtig bei der Berechnung von Defekten in Materialien, die bei Raumtemperatur angewendet werden. 

Physikern in der Abteilung ‚Computergestütztes Materialdesign‘ am Max-Planck-Institut für Eisenforschung (MPIE) ist nun der Durchbruch in der Computersimulation von Defekten in genau diesem, fehlenden Temperaturintervall gelungen. „Bisherige Berechnungen der Energien von Gitterdefekten konnten die komplexe Wechselwirkung von Gitterschwingungen nicht einbeziehen.

Dank methodischer Durchbrüche gelang es uns, die Wechselwirkung der Gitterschwingungen und deren Temperaturabhängigkeit in unsere Berechnungen vollständig mitzunehmen und zu zeigen, dass diese maßgeblich die Anzahl der Defekte im Material beeinflusst“, so Albert Glensk, Doktorand am MPIE.

„Alle bisherigen Ergebnisse über Defekte in kristal-linen Materialien müssen nun korrigiert werden. Unsere Rechnungen zeigen, dass die bisher verwendeten Defektenergien um bis zu 20% niedriger ausfallen als angenommen. Zum ersten Mal wird nun die Lücke zwischen Theorie und Experiment überbrückt. Alle experimentellen Ergebnisse können nun auch theoretisch beschrieben werden“, so Glensk. 

Mit dieser neuen Einsicht können Wissenschaftler nun viel genauer berechnen und vorhersagen, wie viele Defekte im Material vorhanden sind, um dadurch Aussagen über die Widerstandsfähigkeit des Materials zu treffen. Mit anderen Worten: es wird zukünftig besser möglich sein Werkstoffe auf dem Computer zu optimieren und Materialversagen vorauszusehen und dadurch besser in Produktionsabläufe einzuplanen.

Originalveröffentlichung:
A. Glensk; B. Grabowski; T. Hickel; J. Neugebauer: Breakdown of the Arrhenius Law in Describing Vacancy Formation Energies: The Importance of Local Anharmonicity Revealed by Ab initio Thermodynamics. Physical Review X 4 (2014) 011018. American Physical Society.
DOI: 10.1103/PhysRevX.4.011018

Weitere Informationen:

http://www.mpie.de
http://journals.aps.org/prx/edannounce/PhysRevX.4.010001

Yasmin Ahmed Salem | Max-Planck-Institut für Eisenforschung GmbH

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy