Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rasante Reise durchs Kristallgitter

15.01.2015

Ein Elektron braucht 40 Attosekunden, um eine einzelne Lage von Atomen zu durchqueren

Wie schnell ein Elektron durch die Atomlagen eines Kristallgitters flitzt, hat ein internationales Team um Forscher der Technischen Universität München und des Max-Planck-Instituts für Quantenoptik in Garching gemessen. Mithilfe extrem kurzer Laserpulse stoppten die Physiker die Geschwindigkeit:


Elektronen im Blick: Reinhard Kienberger inspiziert die ein Experiment an der Attosekunden-Beamline, mit der er und seine Kollegen die Bewegung von Elektronen untersuchen.

© Thorsten Naeser


Stoppuhr für Elektronen: Ein Laserpuls (rot) und ein extrem-ultravioletter (XUV) Attosekundenpuls (violett) treffen auf eine Oberfläche aus Schichten von Magnesiumatomen (dunkelblau). Darunter befindet sich ein Kristallgitter aus Wolfram (grün). Der XUV-Puls schlägt aus den Wolframatomen Elektronen heraus. Mit dem Laserpuls können die Physiker anschließend messen, wie lange die Wolframelektronen benötigen, um die Magnesiumschichten zu durchdringen.

© Christian Hackenberger

Demnach braucht ein Elektron 40 Attosekunden, um eine Lage von Magnesiumatomen zu durchdringen. Eine Attosekunde ist der Milliardste Teil einer Milliardstel Sekunde. Die genaue Kenntnis, wie Elektronen sich durch ein Material bewegen, könnte bei der Entwicklung kleinerer und schnellerer elektronischer Bauteile helfen.

Fast unvorstellbar kurz sind die Zeitdimensionen, in denen sich Elektronen innerhalb von Atomen bewegen. Werden sie etwa durch Licht angeregt, dann ändern sie ihren quantenmechanischen „Aufenthaltsort“ in nur Attosekunden-langen Zeitspannen.

Nun hat ein internationales Forscherteam um Reinhard Kienberger, Professor für Laser- und Röntgenphysik an der Technischen Universität München und Forschungsgruppenleiter am Max-Planck-Institut für Quantenoptik, bestimmt, wie lange ein Elektron für den Weg durch eine einzelne Atomlage benötigt. Demnach saust ein Elektron aus einem Wolfram-Kristall in 40 Attosekunden durch eine Lage aus Magnesiumatomen, die nur wenige Milliardstel Meter dick ist.

Ein ultravioletter Attosekundenpuls löst Elektronen aus Magnesium und Wolfram

Für ihr Experiment, an dem auch Wissenschaftler der Ludwig-Maximilians-Universität München sowie der Technischen Universität Wien mitwirkten, brachten die Physiker auf einen Wolframkristall eine definierte Anzahl von Lagen aus Magnesiumatomen auf. Auf diese Proben schickten die Forscher zwei Lichtpulse. Der erste Lichtpuls dauerte rund 450 Attosekunden, bei Frequenzen im extremen Ultraviolett. Dieser Lichtblitz drang in das Material ein und löste sowohl aus den Magnesiumlagen als auch aus dem darunter liegenden Wolframkristall je ein sehr nahe am Atomkern gelegenes Elektron heraus.

Das „Wolfram-Elektron“ und das „Magnesium-Elektron“ bewegten sich nach ihrer Freisetzung durch den Kristall bis an dessen Oberfläche, an der sie den Festkörper verließen. (Elektronen aus dem Wolframkristall konnten maximal vier Lagen von Magnesiumatomen durchdringen.) Dort wurden die Teilchen vom elektrischen Feld des zweiten Lichtpulses erfasst, einem infraroten Wellenzug mit einer Dauer von weniger als fünf Femtosekunden.

Ein Beitrag, um kleinere uns schnellere Transistoren zu entwickeln

Da das „Wolfram-Elektron“ und das „Magnesium-Elektron“ aufgrund unterschiedlich langer Wege auch zu unterschiedlichen Zeiten an der Oberfläche ankamen, spürten sie den zweiten, infraroten Lichtpuls zu verschiedenen Zeiten, das heißt sie erfuhren unterschiedliche Stärken des oszillierenden elektrischen Feldes. Demzufolge wurden beide Teilchen auch unterschiedlich stark beschleunigt. Aus den daraus resultierenden Energieunterschieden der Elektronen konnten die Forscher ermitteln, wie lange ein Elektron benötigte, um eine Lage von Atomen zu durchqueren.

Die Experimente geben Aufschluss darüber, wie Elektronen sich im Mikrokosmos bewegen. Das Wissen, wie schnell sich ein Elektron von einem Ort zum anderen bewegt, ist auch für Anwendungen von Bedeutung: „Während sich beispielsweise in heutigen Transistoren eine Vielzahl von Elektronen über immer noch große Strecken bewegt, könnten in Zukunft einzelne Elektronen ein Signal über Nanostrukturen übermitteln“, sagt Reinhard Kienberger. „Dadurch könnten elektronische Geräte, zum Beispiel auch Computer, um ein Vielfaches schneller und kleiner werden.“ Um die entsprechenden Bauteile zu entwickeln, wollen Forscher besser verstehen, wie schnell Elektronen die winzigen Distanzen in solchen Schaltelementen zurücklegen.


Ansprechpartner

Prof. Dr. Reinhard Kienberger
Technische Universität München

Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 89 289-12840

E-Mail: reinhard.kienberger@tum.de


Dr. Olivia Meyer-Streng
Presse und Kommunikation

Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 89 32905-213

Fax: +49 89 32905-200

E-Mail: olivia.meyer-streng@mpq.mpg.de


Originalpublikation


Stefan Neppl, Ralph Ernstorfer, Adrian Cavallieri, Christoph Lemell, Georg Wachter, Elisabeth Bothschafter, Michael Jobst, Michael Hofstetter, Ulf Kleineberg, Johannes Barth, Dirk Menzel, Johannes Burgdörfer, Peter Feulner, Ferenc Krausz und Reinhard Kienberger

Direct observation of electron propagation and dielectric screening on the atomic length scale

Nature, 15. Januar 2015; doi: 10.1038/nature14094

Prof. Dr. Reinhard Kienberger | Max-Planck-Institut für Quantenoptik, Garching
Weitere Informationen:
http://www.mpg.de/8838658/elektron_geschwindigkeit_attosekunden

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit