Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rasante Reise durchs Kristallgitter

15.01.2015

Ein Elektron braucht 40 Attosekunden, um eine einzelne Lage von Atomen zu durchqueren

Wie schnell ein Elektron durch die Atomlagen eines Kristallgitters flitzt, hat ein internationales Team um Forscher der Technischen Universität München und des Max-Planck-Instituts für Quantenoptik in Garching gemessen. Mithilfe extrem kurzer Laserpulse stoppten die Physiker die Geschwindigkeit:


Elektronen im Blick: Reinhard Kienberger inspiziert die ein Experiment an der Attosekunden-Beamline, mit der er und seine Kollegen die Bewegung von Elektronen untersuchen.

© Thorsten Naeser


Stoppuhr für Elektronen: Ein Laserpuls (rot) und ein extrem-ultravioletter (XUV) Attosekundenpuls (violett) treffen auf eine Oberfläche aus Schichten von Magnesiumatomen (dunkelblau). Darunter befindet sich ein Kristallgitter aus Wolfram (grün). Der XUV-Puls schlägt aus den Wolframatomen Elektronen heraus. Mit dem Laserpuls können die Physiker anschließend messen, wie lange die Wolframelektronen benötigen, um die Magnesiumschichten zu durchdringen.

© Christian Hackenberger

Demnach braucht ein Elektron 40 Attosekunden, um eine Lage von Magnesiumatomen zu durchdringen. Eine Attosekunde ist der Milliardste Teil einer Milliardstel Sekunde. Die genaue Kenntnis, wie Elektronen sich durch ein Material bewegen, könnte bei der Entwicklung kleinerer und schnellerer elektronischer Bauteile helfen.

Fast unvorstellbar kurz sind die Zeitdimensionen, in denen sich Elektronen innerhalb von Atomen bewegen. Werden sie etwa durch Licht angeregt, dann ändern sie ihren quantenmechanischen „Aufenthaltsort“ in nur Attosekunden-langen Zeitspannen.

Nun hat ein internationales Forscherteam um Reinhard Kienberger, Professor für Laser- und Röntgenphysik an der Technischen Universität München und Forschungsgruppenleiter am Max-Planck-Institut für Quantenoptik, bestimmt, wie lange ein Elektron für den Weg durch eine einzelne Atomlage benötigt. Demnach saust ein Elektron aus einem Wolfram-Kristall in 40 Attosekunden durch eine Lage aus Magnesiumatomen, die nur wenige Milliardstel Meter dick ist.

Ein ultravioletter Attosekundenpuls löst Elektronen aus Magnesium und Wolfram

Für ihr Experiment, an dem auch Wissenschaftler der Ludwig-Maximilians-Universität München sowie der Technischen Universität Wien mitwirkten, brachten die Physiker auf einen Wolframkristall eine definierte Anzahl von Lagen aus Magnesiumatomen auf. Auf diese Proben schickten die Forscher zwei Lichtpulse. Der erste Lichtpuls dauerte rund 450 Attosekunden, bei Frequenzen im extremen Ultraviolett. Dieser Lichtblitz drang in das Material ein und löste sowohl aus den Magnesiumlagen als auch aus dem darunter liegenden Wolframkristall je ein sehr nahe am Atomkern gelegenes Elektron heraus.

Das „Wolfram-Elektron“ und das „Magnesium-Elektron“ bewegten sich nach ihrer Freisetzung durch den Kristall bis an dessen Oberfläche, an der sie den Festkörper verließen. (Elektronen aus dem Wolframkristall konnten maximal vier Lagen von Magnesiumatomen durchdringen.) Dort wurden die Teilchen vom elektrischen Feld des zweiten Lichtpulses erfasst, einem infraroten Wellenzug mit einer Dauer von weniger als fünf Femtosekunden.

Ein Beitrag, um kleinere uns schnellere Transistoren zu entwickeln

Da das „Wolfram-Elektron“ und das „Magnesium-Elektron“ aufgrund unterschiedlich langer Wege auch zu unterschiedlichen Zeiten an der Oberfläche ankamen, spürten sie den zweiten, infraroten Lichtpuls zu verschiedenen Zeiten, das heißt sie erfuhren unterschiedliche Stärken des oszillierenden elektrischen Feldes. Demzufolge wurden beide Teilchen auch unterschiedlich stark beschleunigt. Aus den daraus resultierenden Energieunterschieden der Elektronen konnten die Forscher ermitteln, wie lange ein Elektron benötigte, um eine Lage von Atomen zu durchqueren.

Die Experimente geben Aufschluss darüber, wie Elektronen sich im Mikrokosmos bewegen. Das Wissen, wie schnell sich ein Elektron von einem Ort zum anderen bewegt, ist auch für Anwendungen von Bedeutung: „Während sich beispielsweise in heutigen Transistoren eine Vielzahl von Elektronen über immer noch große Strecken bewegt, könnten in Zukunft einzelne Elektronen ein Signal über Nanostrukturen übermitteln“, sagt Reinhard Kienberger. „Dadurch könnten elektronische Geräte, zum Beispiel auch Computer, um ein Vielfaches schneller und kleiner werden.“ Um die entsprechenden Bauteile zu entwickeln, wollen Forscher besser verstehen, wie schnell Elektronen die winzigen Distanzen in solchen Schaltelementen zurücklegen.


Ansprechpartner

Prof. Dr. Reinhard Kienberger
Technische Universität München

Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 89 289-12840

E-Mail: reinhard.kienberger@tum.de


Dr. Olivia Meyer-Streng
Presse und Kommunikation

Max-Planck-Institut für Quantenoptik, Garching
Telefon: +49 89 32905-213

Fax: +49 89 32905-200

E-Mail: olivia.meyer-streng@mpq.mpg.de


Originalpublikation


Stefan Neppl, Ralph Ernstorfer, Adrian Cavallieri, Christoph Lemell, Georg Wachter, Elisabeth Bothschafter, Michael Jobst, Michael Hofstetter, Ulf Kleineberg, Johannes Barth, Dirk Menzel, Johannes Burgdörfer, Peter Feulner, Ferenc Krausz und Reinhard Kienberger

Direct observation of electron propagation and dielectric screening on the atomic length scale

Nature, 15. Januar 2015; doi: 10.1038/nature14094

Prof. Dr. Reinhard Kienberger | Max-Planck-Institut für Quantenoptik, Garching
Weitere Informationen:
http://www.mpg.de/8838658/elektron_geschwindigkeit_attosekunden

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Auf dem Weg zur optischen Kernuhr
19.04.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Laser erzeugt Magnet – und radiert ihn wieder aus
18.04.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verbesserte Stabilität von Kunststoff-Leuchtdioden

Polymer-Leuchtdioden (PLEDs) sind attraktiv für den Einsatz in großflächigen Displays und Lichtpanelen, aber ihre begrenzte Stabilität verhindert die Kommerzialisierung. Wissenschaftler aus dem Max-Planck-Institut für Polymerforschung (MPIP) in Mainz haben jetzt die Ursachen der Instabilität aufgedeckt.

Bildschirme und Smartphones, die gerollt und hochgeklappt werden können, sind Anwendungen, die in Zukunft durch die Entwicklung von polymerbasierten...

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

124. Internistenkongress in Mannheim: Internisten rücken Altersmedizin in den Fokus

19.04.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nachhaltige und innovative Lösungen

19.04.2018 | HANNOVER MESSE

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungsnachrichten

Auf dem Weg zur optischen Kernuhr

19.04.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics