Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Den Rätseln des Weltalls auf der Spur

26.04.2011
Mit dem Alpha-Magnet-Spektrometer fliegt das Ergebnis von zehn Jahren wissen-schaftlicher Arbeit von Physikern der RWTH ins All

Bei ihrem letzten Flug bringt die Raumfähre Endeavour in ihrer Ladebucht eine besondere Fracht zur Internationalen Raumstation ISS: das Alpha-Magnet-Spektrometer (AMS). An dem sieben Tonnen schweren und 1,5 Milliarden Euro teuren Instrument haben zehn Jahre lang mehr als 500 Forscher und Ingenieure aus 16 Ländern gearbeitet.

Univ.-Prof. Dr. rer.nat. Stefan Schael, Inhaber des RWTH-Lehrstuhls für Experimen-talphysik, koordinierte dabei die deutschen Beiträge und ist mit seiner Gruppe maßgeblich beteiligt an der Entwicklung und dem Bau mehrerer Komponenten. „Das AMS-Experiment ist ein herausragendes Projekt der internationalen Grundlagenforschung. Die umfangreiche Beteiligung der RWTH Aachen in den letzten 15 Jahren unterstreicht die Bedeutung der Naturwissenschaften an unserer technischen Hochschule", betont RWTH-Rektor Prof. Ernst Schmachtenberg.

Das AMS wird an der Raumstation ISS angebracht und hat die Aufgabe, die kosmische Höhenstrahlung im Weltraum zu vermessen. Damit wollen die Wissenschaftler einigen Rätseln des Universums auf die Spur kommen. Dazu gehört beispielsweise die Frage nach der Natur der Dunklen Materie, die sich bisher nur mittelbar durch ihre An-ziehungskraft nachweisen lässt. Ähnlich verhält es sich mit der Antimaterie: Der Urknall-theorie folgend, hätte sie in gleichem Maße wie Materie entstehen müssen - doch bisher konnte keine kosmische Antimaterie nachgewiesen werden. „Von dem, was unser Universum ausmacht, können wir derzeit gerade einmal vier Prozent mit unserer Physik erklären – den übrigen 96 Prozent haben wir Namen wie ‚Dunkle Materie‘ und ‚Dunkle Energie‘ gegeben, wissen darüber aber so gut wie nichts“, erläutert Prof. Schael.

Hier soll AMS mit seinen Detektoren neue Erkenntnisse liefern. Herzstück des Spektro-meters ist ein Spurdetektor, der von einem ringförmigen Permanentmagneten umgeben ist. Der Magnet zwingt die durchfliegenden geladenen Teilchen auf Kreis-Bahnen, aus deren Krümmung die Wissenschaftler die elektrische Ladung der Teilchen und ihre Energie bestimmen können. AMS arbeitet mehrstufig und trägt an seiner Spitze den so genannten Übergangsstrahlungsdetektor. Er wurde vom Team der RWTH zusammen mit der Gruppe von Prof. Wim de Boer des Karlsruher Instituts für Technologie gebaut. Aufgabe des aus über 300 Detektorkammern bestehenden Instruments ist es, zwischen leichten und schweren Teilchen zu unterscheiden.

Bereits zwei Stunden nach dem Start wird AMS noch an Bord des Space Shuttles ein-geschaltet. Zwar nehmen die Teilchendetektoren noch nicht den Betrieb auf, aber die Elektronik zur Überwachung des komplexen Messinstruments liefert erste Informationen, wie gut AMS den Shuttle-Start überstanden hat. Vier Tage später soll AMS dann auf der Raumstation montiert werden: Der Greifarm des Space-Shuttles hebt es dazu aus der Ladebucht und übergibt es an den Greifarm der ISS. Sobald es an seiner endgültigen Position auf der ISS fixiert ist, werden die elektrischen Verbindungen hergestellt. Erst dann beginnt für die beteiligten Wissenschaftler die eigentliche Arbeit. „Früher hat man bei Fernsehern die Zimmerantenne justieren müssen, um ein scharfes Bild zu erhalten. Wir haben 300.000 Antennen, die wir jede einzeln justieren müssen, damit AMS uns optimale Bilder der kosmischen Höhenstrahlung liefert“, so Schael. AMS wird dabei in 90 Minuten mit der ISS zusammen die Erde umkreisen, so dass sich die Betriebsparameter kontinuierlich verändern. „Wir stehen mit unserer Forschung noch ganz am Anfang“, ergänzt der Aachener Wissenschaftler. „Aber bereits jetzt ist sicher: Mit AMS werden wir viel über die Zusammensetzung der kosmischen Strahlung lernen und somit auch darüber, wie unsere Galaxie aufgebaut und unser Universum entstanden ist.“ Die Frage nach der Natur der Dunklen Materie, der Ursache der Materie-Antimaterie Asymmetrie im Universum oder des Aufbaus der Materie in Neutronensternen betreffen die Grundlagen der modernen Physik. AMS hat das Potenzial, in den nächsten Jahren hierzu wichtige Beiträge zu liefern und unser Weltbild damit grundlegend zu verändern.

Ein Projekt dieser Größenordnung braucht neben der fachlichen Expertise auch ent-sprechende Unterstützung: Deutsche Wissenschaftler und deutsche Spitzentechnologie sind maßgeblich an dem internationalen Projekt beteiligt, das vom Raumfahrt-management des Deutschen Zentrums für Luft- und Raumfahrt (DLR) mit Mitteln des Bundesministeriums für Wirtschaft und Technologie (BMWi) gefördert wird.

i.A. Sabine Busse

Weitere Informationen:
Uni.-Prof. Dr. Stefan Schael
Telefon: 0241 802 7159
Mobil: 0049 173 7217212
E-Mail: Stefan.Schael@physik.rwth-aachen.de

Thomas von Salzen | idw
Weitere Informationen:
http://www.rwth-aachen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich
27.03.2017 | Universität Wien

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Clevere Folien voller Quantenpunkte

27.03.2017 | Materialwissenschaften

In einem Quantenrennen ist jeder Gewinner und Verlierer zugleich

27.03.2017 | Physik Astronomie

Klimakiller Kuh: Methan-Ausstoß von Vieh könnte bis 2050 um über 70 Prozent steigen

27.03.2017 | Biowissenschaften Chemie