Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weiter Rätsel um das Proton

25.01.2013
Internationales Forscherteam bestätigt mittels Laserspektroskopie an exotischem Wasserstoff unerwartet kleinen Protonenradius.

Dieses Ergebnis sorgte bereits vor knapp drei Jahren für großes Aufsehen: Untersuchungen an exotischem Wasserstoff, bei dem statt eines Elektrons ein negativ geladenes Myon den Atomkern umkreist, lieferten einen signifikant kleineren Wert für den Protonenradius (genauer: Ladungsradius) als die bis dahin erfolgten Messungen an natürlichem Wasserstoff oder der Elektron-Proton-Streuung.


Foto: Dr. Franz Kottmann, Dr. Randolf Pohl und Dr. Daniel Covita (von links nach rechts) stehen vor einem supraleitenden Magnet (5 Tesla), in dem das Experiment stattfindet. Im Inneren befinden sich die Myonendetektoren und die Wasserstoffzelle. Das starke Magnetfeld ist notwendig, um den Myonenstrahl auf etwa den Durchmesser eines Bleistiftes zu bündeln.
© CREMA-Kollaboration, MPQ

Eine neue Messung desselben Teams bestätigt nun einerseits diesen Wert für den Ladungsradius und ermöglicht andererseits erstmalig die Bestimmung des magnetischen Radius des Protons mittels Laserspektroskopie an myonischem Wasserstoff. Die neue Arbeit wird in der amerikanischen Fachzeitschrift Science vom 25. Januar 2013 veröffentlicht. Die Experimente wurden am Paul Scherrer Institut (PSI) im schweizerischen Villigen durchgeführt, das als einziges Forschungszentrum weltweit ausreichend viele Myonen für solche Untersuchungen erzeugt. Beteiligt waren unter anderem Forscher vom Max-Planck-Institut für Quantenoptik (MPQ) in Garching bei München, die Eidgenössische Technische Hochschule (ETH) Zürich, die Universität Freiburg (Schweiz), das Institut für Strahlwerkzeuge (IFSW) der Universität Stuttgart, sowie von Dausinger & Giesen GmbH, Stuttgart. Die Ergebnisse fachen erneut die Debatte darüber an, ob die beobachteten Diskrepanzen eine konservative Erklärung finden werden, weil sie etwa auf mangelndes Verständnis der in allen Messungen auftretenden systematischen Fehler zurückgehen, oder ob am Ende doch „neue Physik“ dahinter steckt.

Bei den Untersuchungen der Naturgesetze spielt das chemische Element Wasserstoff seit vielen Jahren eine Schlüsselrolle. Sein Atomkern besteht aus einem einzigen Proton, um den ein Elektron kreist. Für die Energieniveaus in diesem denkbar einfachen Atom liefert die Quantenelektrodynamik sehr genaue Vorhersagen. Dabei muss berücksichtigt werden, dass die elektrische Ladung des Protons – im Gegensatz zur Ladung des Elektrons – nicht in einem Punkt vereint ist. Vielmehr besteht das Proton aus Quarks, die durch „Klebeteilchen“ (Gluonen) zusammengehaltenen werden, so dass sowohl die elektrische Ladung als auch der Magnetismus im Proton über einen ausgedehnten Bereich verteilt sind. Diese Ausdehnung des Protons führt zu Verschiebungen der Energieniveaus im Wasserstoff – und im Umkehrschluss lassen sich aus gemessenen Verschiebungen die elektrischen und magnetischen Protonenradien bestimmen.

2010 veröffentlichten die Wissenschaftler die ersten spektroskopischen Messungen der Verschiebung des sog. 2S-Energieniveaus in myonischem Wasserstoff. Für die Herstellung dieser exotischen Variante beschossen sie Wasserstoff mit Myonen (diese Teilchen stimmen in fast allen Eigenschaften mit Elektronen überein, sind jedoch 200mal schwerer) aus einem Beschleuniger am PSI. Diese nehmen, wenn sie langsam genug sind, im Wasserstoffatom den Platz der Elektronen ein. Auf Grund seiner großen Masse kommt das Myon dem Proton sehr viel näher als das Elektron, dementsprechend stärker ist auch die Verschiebung der Energieniveaus. Ihre Messung stellt hohe technische Anforderungen an das Experiment: da die myonischen Wasserstoffatome sehr kurzlebig sind (Myonen leben etwa nur 2 Millionstel Sekunden), müssen die Lichtpulse für die Anregung der Resonanz innerhalb von Nanosekunden nach der Registrierung eines Myons auf das Wasserstofftarget abgefeuert werden. Der am Institut für Strahlwerkzeuge (IFSW) der Universität Stuttgart entwickelte Scheibenlaser war dabei ein wesentlicher Baustein zur Erfüllung dieser Anforderung. Die für die Anregung notwendigen Spektroskopielaser wurden gemeinsam vom Max-Planck-Institut für Quantenoptik und dem Laboratoire Kastler Brossel (Paris) entwickelt.

In dem jetzt in Science beschriebenen Experiment wurde die Verschiebung für einen weiteren Übergang in myonischem Wasserstoff bestimmt. Daraus konnten die Wissenschaftler zum einen erneut den elektrischen Protonenradius ermitteln. Der Wert von 0.84087(39) Femtometern (1 fm = 0.000 000 000 000 001 Meter) ist in Übereinstimmung mit dem 2010 veröffentlichten (0,84184 fm), jedoch noch 1,7mal genauer. Die Diskrepanz zu den Messungen im normalen Wasserstoff bzw. zur Elektron-Proton-Streuung hat also an Gewicht gewonnen.

Die neue Messung erlaubt zudem nun erstmals die Bestimmung des magnetischen Radius des Protons aus der Laserspektroskopie an myonischem Wasserstoff. Der so bestimmte Wert von 0.87(6) Femtometern stimmt gut mit den bisherigen Werten überein. Auch wenn die Genauigkeit derzeit nicht besser ist als die der bisherigen Messungen, birgt die Laserspektroskopie von myonischem Wasserstoff das Potenzial, die Messgenauigkeit für den magnetischen Radius in Zukunft deutlich zu steigern.

Den Ursachen des Proton-Rätsels auf den Grund zu gehen ist weltweit Motivation für vielseitige Untersuchungen. Einerseits werden die alten Messungen im Wasserstoff und in der Elektronenstreuung neu analysiert oder wiederholt. Zum andern beteiligen sich Theoretiker vieler Fachrichtungen intensiv an der Suche nach der Lösung. Äußerst spannende Vorschläge versuchen, die beobachtete Diskrepanz durch Physik jenseits des Standardmodells zu erklären. Aber es könnte auch sein, dass das Proton eine viel komplexere Struktur hat als bisher angenommen, die jedoch erst unter dem Einfluss des schweren Myons deutlich wird. Um diesen Effekt abzuklären, sind weitere Messungen notwendig. So sind bereits Experimente zur Myon-Proton-Streuung am PSI in Planung. Am Elektronenbeschleuniger in Mainz sind neue Präzisionsmessungen im Gespräch. Und die Spektroskopie myonischer Atome wird vorangetrieben: so wird dieses Jahr erstmalig auch myonisches Helium spektroskopisch vermessen – von derselben Forschergruppe, wiederum am PSI. Dazu wird auch das Lasersystem angepasst und überarbeitet, wozu an der ETH Zürich (Prof. Dr. Klaus Kirch, Dr. Aldo Antognini) und am IFSW (Prof. Dr. Thomas Graf, Dr. Andreas Voß) derzeit das vom Schweizerischen Nationalfond (SNF) und der Deutschen Forschungsgemeinschaft (DFG) geförderte Gemeinschaftsprojekt „Thin-disk laser for muonic atoms spectroscopy“ läuft. Auch vom European Research Council (ERC) wird das Projekt „Myonisches Helium“ großzügig gefördert: Dr. Randolf Pohl vom MPQ in Garching erhielt für das Projekt einen ERC Starting Grant. O. Meyer-Streng (MPQ)

Originalveröffentlichung:
Aldo Antognini, François Nez, Karsten Schuhmann, Fernando D. Amaro, François Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Marc Diepold, Luis M. P. Fernandes, Adolf Giesen, Andrea L. Gouvea, Thomas Graf, Theodor W. Hänsch, Paul Indelicato, Lucile Julien, Cheng-Yang Kao, Paul Knowles, Franz Kottmann, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Cristina M. B. Monteiro, Françoise Mulhauser, Tobias Nebel, Paul Rabinowitz, Joaquim M. F. dos Santos, Lukas A. Schaller, Catherine Schwob, David Taqqu, João F. C. A. Veloso, Jan Vogelsang, Randolf Pohl
Proton structure from the measurement of 2S − 2P transition frequencies of muonic hydrogen

Science, 25. Januar 2013

An dem hier beschriebenen Experiment sind zahlreiche Einrichtungen aus verschiedenen Ländern beteiligt: Max-Planck-Institut für Quantenoptik, Garching bei München, Paul Scherrer Institut PSI, Villigen, Schweiz, Institut für Teilchenphysik, Eidgenössische Technische Hochschule ETH Zürich, Schweiz, Laboratoire Kastler Brossel, Paris, Frankreich, Université P. et M. Curie, Paris, Frankreich, Institut für Strahlwerkzeuge der Universität Stuttgart und Dausinger & Giesen GmbH, Stuttgart, Deutschland, Universidade de Coimbra, Portugal, Universidade de Aveiro, Portugal, Yale University, New Haven, USA, National Tsing Hua University, Hsinchu 300, Taiwan, Departement für Physik, Universität Freiburg, Freiburg, Schweiz, Princeton University, USA, Ludwig-Maximilians-Universität München.

Kontakte:

Dr. Randolf Pohl
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +49 (0)89 / 32 905 -281
Fax: +49 (0) 89 / 32 905 -200
E-Mail: randolf.pohl@mpq.mpg.de
http://www.mpq.mpg.de/~rnp/
Prof. Dr. Theodor W. Hänsch
Lehrstuhl für Experimentalphysik,
Ludwig-Maximilians-Universität, München
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1, 85748 Garching
Tel.: +49 (0)89 / 32 905 -702/-712
Fax: +49 (0)89 / 32 905 -312
E-Mail: t.w.haensch@mpq.mpg.de
Prof. Dr. Thomas Graf
Universität Stuttgart
Institut für Strahlwerkzeuge
Pfaffenwaldring 43
D-70569 Stuttgart
Tel.: +49 (0)711 / 68 566 840
E-Mail: graf@ifsw.uni-stuttgart.de
Dr. Aldo Antognini
ETH Zürich
CH-8093 Zürich
Tel.: +41 (0)56 / 31 046 14
Fax: +41 (0)44 / 63 320 31
E-Mail: aldo@phys.ethz.ch
https://muhy.web.psi.ch/wiki/
Dr. Franz Kottmann
Paul Scherrer Institut
CH-5232 Villigen
Tel.: +41 (0)56 / 31 035 02
E-Mail: franz.kottmann@psi.ch
Karsten Schuhmann
ETH Zürich
CH-8093 Zürich
Tel.: +41 (0)44 / 63 320 31
E-Mail: skarsten@phy.ethz.ch
and Dausinger & Giesen GmbH
Rotebühlstrasse 87
D-70178 Stuttgart
Dr. Olivia Meyer-Streng
Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Tel.: +49 (0)89 / 32 905 -213
Fax: +49 (0)89 / 32 905 -200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit