Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Verstimmte" Photonenerzeugung - Stuttgarter Physiker decken nicht-resonante Kopplung auf

23.11.2009
Für künftige Anwendungen in der Quanten-Informationstechnologie wie etwa der abhörsicheren Datenübertragung werden verschlüsselte Nachrichten mit Hilfe von Lichtteilchen übertragen.

Physiker der Universität Stuttgart deckten neue Effekte der nicht-resonanten Kopplung auf. Gearbeitet haben sie dabei mit winzigen Türmchen aus Halbleitermaterial, die an der Universität Würzburg erzeugt wurden. Die neuen Ergebnisse zu Quantenpunkten werden jetzt in der Zeitschrift Nature Photonics veröffentlicht.

Für künftige Anwendungen in der Quanten-Informationstechnologie wie etwa der abhörsicheren Datenübertragung werden verschlüsselte Nachrichten mit Hilfe von Lichtteilchen übertragen. Hierzu wird ein so genannter Quantenemitter (eine Lichtquelle) in einem Resonator energetisch angeregt, bis er einzelne Photonen (Lichtteilchen) "abschießt". Nach bisherigen Modellen ging man davon aus, dass es zu einer Wechselwirkung (Kopplung) von Quantenemitter und Resonator nur dann kommen kann, wenn die Photonenenergie des Emitters und eine Schwingungsmode des Resonator-feldes präzise übereinstimmen (Strikter Resonanzfall).

Physiker um Prof. Peter Michler vom Institut für Halbleiteroptik und Funktionelle Grenzflächen der Universität Stuttgart deckten nun neue Effekte der nicht-resonanten Kopplung auf, die über dieses Modell hinausgehen. Gearbeitet haben sie dabei mit winzigen Türmchen aus Halbleitermaterial, die an der Universität Würzburg erzeugt wurden. Die neuen Ergebnisse zu Quantenpunkten werden jetzt in der Zeitschrift Nature Photonics veröffentlicht.*)

Gut geeignet für die Herstellung zuverlässiger Quantenemitter sind kristalline Halbleitermaterialen, da sich aus diesen künstliche Quantenpunkte erzeugen lassen, deren spektralen Eigenschaften über weite Bereiche des Spektrums abgestimmt werden können. In einem weiteren Schritt ist es möglich, die Dynamik der spontanen Photonenaussendungen gezielt zu manipulieren, indem ein Quantenpunkt in einen miniaturisierten Resonator eingesetzt wird. Ein solches Werkzeug stellen die Würzburger Halbleiter-Türmchen dar. Die Resonatoren mit einem Durchmesser von nur ein bis zwei Mikrometern enthalten Quantenpunkte, deren elektronische und optische Eigenschaften sich bei der Herstellung maßschneidern und genau analysieren lassen. Die winzigen Strukturen bestehen aus einer ausgeklügelten Abfolge von Schichten aus den Halbleitern Aluminium-Arsenid und Gallium-Arsenid.

"Ihr spezieller Aufbau macht sie zu hochwertigen optischen Resonatoren, die einzelne Photonen auf einer Skala der Lichtwellenlänge in allen drei Raumdimensionen einschließen", sagt Stephan Reitzenstein vom Lehrstuhl für Technische Physik der Uni Würzburg.

Anhand dieser Strukturen entdeckten die Stuttgarter Physiker einen Effekt der nicht-resontanen Kopplung, der die bisherigen Vorstellungen des strikten Resonanzfalls sprengt. Durch systematische spektroskopische Untersuchungen konnten sie aufzeigen, dass gekoppelte Quantenpunkt-Mikroresonator-Systeme insbesondere auch dann Photonen aussenden, wenn Quantenpunkt und Resonator stark gegeneinander verstimmt sind, also mit unterschiedlichen Frequenzen schwingen. "Dieser zunächst unterwartete Effekt weist auf eine ausgeprägte Licht-Materie-Wechselwirkung in derartigen Festkörpersystemen hin und wird folglich wesentliche Auswirkungen auf das Design und die Funktionalität zukünftiger Quantenemitter auf Quantenpunktbasis haben", so der Leiter der Stuttgarter Forschungsgruppe, Prof. Peter Michler.

Grundlegender Beitrag zum Verständnis des Ursprungs der nicht-resonanten Kopplung

Ein wesentlicher treibender Prozess der nicht-resonanten Kopplung scheint der Effekt der so genannten reinen Dephasierung (des Kohärenzverlusts des Systems ohne Aussendung eines Photons) speziell über Wechselwirkung mit quantisierten Gitterschwingungen zu sein. Somit sind die aktuellen Untersuchungen ein wichtiger Beitrag, um die den nach wie vor nicht vollständig aufgeklärten und in der Fachliteratur diskutierten Ursprung der nicht-resonanten Kopplung grundlegend zu verstehen.

Darüber hinaus kann die nicht-resonante Kopplung in der Forschung in neuartiger und sehr gezielter Weise angewendet werden. So zeigen zahlreiche Emissionsmessungen an resonant angeregten Einzel-Quantenpunkten, dass der Emissionskanal der gekoppelten und verstimmten Mode auch als direkter "Monitor" der Emissionscharakteristika des Quantenpunktes dienen kann. Auf diese Weise lassen sich beispielsweise elektronische Feinstrukturen, die Absorptionssättigung des Grundzustandes oder auch die untergrundfreie Messung der Photonenstatistik in Emission beobachten. "Die indirekte Beobachtung dieser Charakteristika durch Kopplung an die Resonanzemission des Grundzustands bietet ein sehr mächtiges Werkzeug für weitergehende Untersuchungen an derartigen Quantensystemen", so Michler.

Weitere Informationen:
Dr. Sven M. Ulrich, Universität Stuttgart, Institut für Halbleiteroptik und Funktionelle Grenzflächen, Tel. 0711/685-65226, e-mail s.ulrich@ihfg.uni-stuttgart.de

Dr. Stephan Reitzenstein, Universität Würzburg, Lehrstuhl für Technische Physik, Tel. 0931/31-85116, stephan.reitzenstein@physik.uni-wuerzburg.de

Serkan Ates, Sven M. Ulrich, Ata Ulhaq, Stephan Reitzenstein, Andreas Löffler, S. Höfling, Alfred Forchel and Peter Michler: "Non-resonant dot-cavity coupling and its potential for resonant single-quantum-dot spectroscopy",

DOI 10.1038/NPHOTON.2009.215

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-wuerzburg.de
http://www.uni-wuerzburg.de/sonstiges/meldungen/single/artikel/nano-tuerme/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
20.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

Tagung »Anlagenbau und -betrieb der Zukunft«

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Wie Immunzellen Bakterien mit Säure töten

18.05.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics