Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenteilchen in Reih und Glied

19.08.2010
Wissenschaftlern am Max-Planck-Institut für Quantenoptik gelingen
„in situ-Schnappschüsse“ einzelner Atome in einem hochgeordneten Quantengas.

Kalte Atome in optischen Gittern haben sich in den letzten Jahren zu einem interdisziplinären Werkzeug der Quanten- und Festkörperphysik entwickelt. Bislang waren die Möglichkeiten, Quantengase auf mikroskopischer Skala zu manipulieren und zu beobachten, jedoch sehr begrenzt.


Im BEC schwankt die Dichte der Atome erheblich von Gitterplatz zu Gitterplatz (links). Der Mott-Isolator (Mitte) weist dagegen eine fast vollkommen geordnete Struktur auf. Bei höheren Teilchenzahlen bildet sich die charakteristische Schalenstruktur aus (rechts). MPQ, Abt. Quanten-Vielteilchensysteme

Erstmals hat es jetzt ein Team um Dr. Stefan Kuhr und Prof. Immanuel Bloch vom Max-Planck-Institut für Quantenoptik (Garching bei München) geschafft, ein stark korreliertes System Atom für Atom und Gitterplatz für Gitterplatz direkt sichtbar zu machen (Nature, 18. August 2010, DOI 10.1038/nature09378). Dabei konnten die Physiker beobachten, dass sich die Atome unter bestimmten Bedingungen in optischen Gittern in sehr regelmäßigen Strukturen anordnen, mit einer festen Zahl von Atomen pro Gitterplatz. Dies ist eine wesentliche Voraussetzung dafür, solche Systeme als Quantenregister mit einzeln adressierbaren Quantenbits in zukünftigen Quantencomputern zu nutzen.

Im vorliegenden Experiment hantieren die Physiker mit einer Wolke aus einigen tausend „bosonischen“ Rubidium-Atomen. Bosonen sind gesellige Teilchen, die sich bei extrem tiefen Temperaturen (einigen Nanokelvin) alle im gleichen Quantenzustand befinden – sie bilden dann ein Bose-Einstein-Kondensat (BEC). In dieser extrem kalten Wolke führen die Atome nur noch minimale Bewegungen aus und sind daher durch äußere Lichtfelder leicht zu beeinflussen. Diesen Effekt nutzen die Wissenschaftler, um das atomare Gas gezielt zu strukturieren. Sie überlagern ihm kreuzweise stehende Lichtwellen, die ein „optisches Gitter“ bilden, eine periodische Anordnung aus hellen und dunklen Bereichen. Die Form des Lichtfeldes erinnert an einen Eierkarton: die Vertiefungen (sie entsprechen den hellen Bereichen des Lichtfeldes) sind energetisch besonders günstig. Dort lassen sich die Rubidium-Atome daher bevorzugt nieder.

Je nachdem, wie hoch das Gitter, d.h. wie hoch die Lichtintensität ist, können Korrelationen zwischen den Teilchen zu einem ganz unterschiedlichen Verhalten des Quantengases führen. Wenn die Gitter relativ flach sind, können die Teilchen auf ihren Nachbarplatz hinüber „tunneln“. Das Ensemble stellt dann eine Art „Supraflüssigkeit“ dar. Stellt man die Gitterhöhe durch entsprechend hohe Lichtintensitäten so ein, dass die Teilchen auf ihren Plätzen quasi fixiert sind, dann erhält man einen sogenannten Mott-Isolator (benannt nach dem britischen Physiker und Nobelpreisträger Sir Neville F. Mott).

Modellrechnungen zeigen, dass die Zahl der Atome pro Gitterplatz in einem Mott-Isolator weit weniger schwankt als in dem anfänglichen BEC. Jetzt konnten die MPQ-Forscher dieses Verhalten explizit nachweisen. „Erstmals konnten wir in einem so hochgradig korrelierten System einzelne Atome auf ihren jeweiligen Gitterplätzen sichtbar machen. Das ist eine echte Sensation“, begeistert sich Dr. Stefan Kuhr, der Leiter des Projekts. „Wie auch sonst üblich, „kühlen“ wir die Atome mit Laserstrahlen. Gleichzeitig nutzen wir die dabei ausgesandten Fluoreszenzphotonen, um die Atome mit einem speziell dafür entwickelten Mikroskop sichtbar zu machen. So sind wir in der Lage, die Zahl der Atome pro Gitterplatz zu bestimmen. Auch die Defekte können wir mit solchen „Schnappschüssen“ einzeln erkennen und verfolgen, wie ihre Zahl mit steigenden Temperaturen zunimmt.“

In eine Serie von Messungen bestimmten die Physiker systematisch die Zahl der Atome pro Gitterplatz für unterschiedliche Teilchenzahlen und Temperaturen. Für das BEC ergaben sich erwartungsgemäß von Gitterplatz zu Gitterplatz relativ große Schwankungen. Im Gegensatz dazu erhielten die Wissenschaftler bei einem Mott-Isolator eine fast perfekte Struktur mit einer sehr geringen Fehlerdichte.

Dabei konnten sie auch die für Mott-Isolatoren charakteristischen Schalen beobachten, die sich bei großen Teilchenzahlen ausbilden (siehe Abbildung). Denn das optische Gitter ist nicht eben, sondern folgt dem gaußförmigen Intensitätsprofil des Laserstrahls und ist nach außen hin „verbogen“. Die Gitterplätze in den Außenbereichen liegen energetisch höher und werden erst aufgefüllt, wenn die inneren Plätze besetzt sind. Von außen nach innen wächst die Atomzahl pro Gitterplatz daher stufenweise an. Sobald sich jedoch zwei Atome (bzw. eine gerade Zahl von Atomen) auf einem Gitterplatz befinden, gewinnen sie durch inelastische Stöße soviel kinetische Energie, dass sie die Falle sofort verlassen. Gerade Besetzungszustände machen sich also als dunkle Ringe bemerkbar.

Ein Mott-Isolator, in dem sich auf jedem Gitterplatz genau ein Atom befindet, stellt ein Quantenregister aus bis zu mehreren hundert Quantenbits dar. „Nun müssen wir noch zeigen, dass wir die Atome wirklich individuell manipulieren können – eine Voraussetzung dafür, um Quantenbits kodieren und auslesen zu können. Die ersten Experimente hierzu führen wir gerade durch“, erklärt Dr. Kuhr.

Kalte Quantengase in optischen Gittern eignen sich aber nicht nur für Anwendungen in zukünftigen Quantencomputern, sondern auch als Quantensimulatoren für Festkörper. Dabei spielen die Atome im Lichtgitter die Rolle der Elektronen im Kristallgitter. Untersuchungen dieser Art können zu einem tieferen Verständnis ungewöhnlicher magnetischer und elektrischer Phänomene wie etwa der Hochtemperatursupraleitung führen und könnten die Entwicklung von Materialien mit maßgeschneiderten Eigenschaften ermöglichen. Olivia Meyer-Streng

Originalveröffentlichung:
Jacob F. Sherson, Christof Weitenberg, Manuel Endres, Marc Cheneau, Immanuel Bloch and Stefan Kuhr,
Single-Atom Resolved Fluorescence Imaging of an Atomic Mott Insulator
Nature, 18. August 2010, DOI 10.1038/nature09378
Kontakt:
Dr. Stefan Kuhr Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße
85748 Garching b. München
Tel.: +49 89 32905 738
E-Mail: stefan.kuhr@mpq.mpg.de
Prof. Dr. Immanuel Bloch
Lehrstuhl für Physik, LMU München Schellingstr. 4, 80799 München, und
Max-Planck-Institut für Quantenoptik
Tel.: +49 89 32905 138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.quantum-munich.de
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie