Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenphysik – heiß und kalt zugleich

17.04.2015

Wissenschaftler aus Heidelberg und Wien untersuchen statistische Beschreibung von Quantensystemen

Eine Wolke aus Quantenteilchen kann mehrere Temperaturen gleichzeitig aufweisen. Das zeigen Experimente, die im Rahmen eines gemeinsamen Projekts von Wissenschaftlern der Universität Heidelberg und der Technischen Universität Wien (Österreich) durchgeführt wurden.


Ein klassisches Gas ist entweder kalt (blau) oder heiß (rot). Manche Quantensysteme können jedoch mehrere Temperaturen gleichzeitig aufweisen. Ein Vergleich der Korrelationsdiagramme zeigt, dass nur für eine spezielle Wahl stark unterschiedlicher Temperaturen die Vorhersagen mit den Messungen übereinstimmen.

Abbildung: Sebastian Erne, Universität Heidelberg, Institut für Theoretische Physik

Die Ergebnisse der Studie machen es möglich, dass sich die Gesetze der Quantenwelt besser mit einer statistischen Beschreibung zusammenführen lassen. „Dies ist für das Verständnis einer Vielzahl von Quantensystemen bedeutsam und eröffnet einen neuen Blick darauf, wie aus der Welt der Quanten unsere alltägliche Welt mit ihren ,klassischen‘ statistischen Eigenschaften wie der Temperatur hervorgeht“, sagt Prof. Dr. Thomas Gasenzer, der als Physiker an der Ruperto Carola lehrt und forscht. Die Ergebnisse der Forschungsarbeiten wurden jetzt in „Science“ veröffentlicht.

Die Luft um uns herum besteht aus unzähligen Molekülen, die ununterbrochen wild durcheinander fliegen. Jeder Versuch, alle diese Teilchen zu verfolgen und ihre Flugbahnen zu beschreiben, ist von vorneherein zum Scheitern verurteilt. Doch für viele Anwendungen ist dies auch gar nicht erforderlich, da sich Eigenschaften finden lassen, die das gemeinsame Verhalten aller Moleküle statistisch beschreiben – etwa die Temperatur, die sich aus den Geschwindigkeiten der Moleküle ergibt.

Nach den Worten von Prof. Gasenzer ist die Temperatur eine außerordentlich nützliche Größe, da sie eine einfache statistische Aussage über die Energie eines hochkomplizierten Teilchengewirrs ermöglicht. Die Wissenschaftler in Heidelberg und Wien haben nun untersucht, auf welche Weise Quantenteilchen einen statistisch beschreibbaren Zustand erreichen. Prof. Gasenzer arbeitete dazu mit dem Team von Prof. Dr. Jörg Schmiedmayer am Atominstitut der Technischen Universität Wien zusammen.

Wie Prof. Gasenzer betont, ist die statistische Betrachtungsweise außerordentlich erfolgreich. Sie beschreibt viele physikalische Vorgänge – vom kochenden Wasser im Topf bis zu Phasenübergängen in Flüssigkristallen, die in Flachbildschirmen Anwendung finden.

Trotz intensiver Forschungsanstrengungen gibt diese Betrachtungsweise aber immer noch Rätsel auf, vor allem wenn es um Quantensysteme geht. Wie aus vielen quantenmechanischen Einzelteilen die bekannten Gesetze der statistischen Physik – und damit letztlich auch unsere „klassische“ Welt – hervorgehen, ist eine der großen offenen Fragen der Physik.

Mit den aktuellen Forschungsarbeiten in Heidelberg und Wien ist es gelungen, Vorgänge in einem Quanten-Vielteilchensystem in Experimenten präzise zu beobachten, um die Ausbildung statistischer Eigenschaften besser zu verstehen. Die Wissenschaftler haben dazu Wolken aus wenigen tausend Atomen auf einem speziellen Mikrochip eingefangen und auf Temperaturen nahe dem absoluten Nullpunkt von -273 Grad Celsius gekühlt. Dabei treten die Quanteneigenschaften der Atome hervor.

Die Experimente brachten Erstaunliches zu Tage: Nach einer plötzlichen Änderung der äußeren Bedingungen am Mikrochip strebt das Quantengas hin zu einem Gleichgewichtszustand, der durch ein statistisches Modell mit mehreren Temperaturen beschrieben wird.

Das Gas kann also heiß und kalt zugleich sein. Die Anzahl der Temperaturen hing davon ab, wie die Forscher die Gase manipulierten. Nach den Worten von Dr. Tim Langen, der die Studie am Atominstitut leitete, können diese komplexen Quantensysteme mit den Mikrochips sehr gut kontrolliert und ihr Verhalten untersucht werden.

Dies ist aus seiner Sicht besonders wichtig, da es bereits zuvor entsprechende theoretische Vermutungen gab, das vorhergesagte Verhalten aber noch nie direkt beobachtet und kontrolliert erzeugt werden konnte.

Die Experimente in Wien wurden an der Universität Heidelberg mit umfangreichen numerischen Berechnungen begleitet. Die Wissenschaftler berechneten die Quantendynamik der Gase, um die theoretischen Vorhersagen überprüfen und die Messdaten korrekt interpretieren zu können.

„Eine wesentliche Voraussetzung dafür ist vor allem die Möglichkeit, hochkomplexe Zusammenhänge zwischen Messgrößen an unterschiedlichen Positionen in dem System direkt zu messen“, sagt der Heidelberger Physiker Sebastian Erne, der für den Vergleich zwischen Theorie und experimentellen Daten geeignete numerische Algorithmen entwickelt hat.

Mit Hilfe von Hochleistungsrechnern konnte er zeigen, dass die gemessenen Korrelationen die vorausgesagten speziellen statistischen Eigenschaften bedingen. „Das Gas muss also als heiß und kalt zugleich aufgefasst werden, damit die experimentellen Beobachtungen in sich schlüssig sind und sowohl den etablierten Gesetzen der Quantenphysik als auch der statistischen Beschreibung genügen“, betont Prof. Gasenzer.

Originalveröffentlichung:
T. Langen, S. Erne, R. Geiger, B. Rauer, T. Schweigler, M. Kuhnert, W. Rohringer, I. E. Mazets, T. Gasenzer, J. Schmiedmayer: Experimental observation of a generalized Gibbs ensemble, Science 10 April 2015: Vol. 348 no. 6231 pp. 207-211, doi: 10.1126/science.1257026

Kontakt:
Prof. Dr. Thomas Gasenzer
Kirchhoff-Institut für Physik
Telefon (06221) 54-5173
t.gasenzer@uni-heidelberg.de

Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.thphys.uni-heidelberg.de/~gasenzer

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Eine Extra-Sekunde zum neuen Jahr
08.12.2016 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einzelne Proteine bei der Arbeit beobachten

08.12.2016 | Biowissenschaften Chemie

Intelligente Filter für innovative Leichtbaukonstruktionen

08.12.2016 | Messenachrichten

Seminar: Ströme und Spannungen bedarfsgerecht schalten!

08.12.2016 | Seminare Workshops