Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenmaterie ohne Gedächtnisverlust

06.07.2016

MPQ Wissenschaftler beobachten Anzeichen für Vielteilchen-Lokalisation in einem geschlossenen Quantensystem.

Wenn gewöhnliche Vielteilchensysteme ins Gleichgewicht kommen, verlieren sie sämtliche Informationen über ihren ursprünglichen Zustand. Diese Erfahrung machen wir zum Beispiel jeden Morgen, wenn wir uns Milch in den Kaffee gießen. Milch und Kaffee mischen sich so perfekt, dass es sich nicht mehr sagen lässt, wie genau diese beiden Flüssigkeiten zusammen gekommen sind. Das gleiche Verhalten legen auch fast alle Quantensysteme an den Tag.


Das Titelbild der Zeitschrift Science zeigt eine künstlerische Darstellung des Experimentes. Sie illustriert das Fortbestehen der Dichtestufe einer atomaren Dichteverteilung in einem optischen Gitter

Science Cover Vol 352, Issue 6293, 24. Juni 2016

Allerdings wurde vor kurzem ein neues Phänomen vorher gesagt, die sogenannte „Vielteilchen-Lokalisation“. Sie erlaubt es gut isolierten Quantensystemen, ihren anfänglichen Zustand auf ewig im Gedächtnis zu behalten.

Nun hat ein Wissenschaftlerteam um Dr. Christian Groß und Prof. Immanuel Bloch (Direktor am MPQ und Lehrstuhl für Quantenoptik an der LMU München) in Zusammenarbeit mit David Huse (Princeton University) starke Hinweise für das Auftreten dieses Phänomens in einem zweidimensionalen Quantensystem aus kalten Rubidiumatomen erhalten (Science, 24. Juni 2016).

Die Wissenschaftler beobachteten, dass sich oberhalb eines bestimmten Grads an Unordnung, die dem System zu Anfang aufgeprägt wurde, ein Gleichgewichtszustand einstellte, der noch detaillierte mikroskopisch Informationen über seine Vergangenheit enthielt.

„Wir waren in der Lage, den Übergang von einem thermischen Gleichgewichtszustand in eine Vielteilchen-lokalisierte Phase zu verfolgen“, betont Dr. Christian Groß. „Das ist die erste derartige Beobachtung in einem Bereich, der mit modernen Simulationstechniken auf klassischen Computern nicht zugänglich ist.“ Das Experiment ist nicht nur von grundsätzlichem Interesse, sondern könnte auch zu neuen Wegen führen, Quanteninformation zu speichern.

Motiviert durch die fundamentale Fragestellung, wie sich Teilchen, die miteinander in Wechselwirkung stehen, in einem ungeordneten System verhalten, entdeckte der amerikanische Physiker Philip Warren Anderson in den 50er Jahren ein Phänomen, dass heute „Anderson Lokalisation“ genannt wird. Diese besagt, dass die Unordnung jegliche Bewegung und damit auch jeglichen Transport verhindert, wenn keine Wechselwirkung zwischen den Teilchen stattfindet.

Doch was geschieht, wenn Unordnung und Wechselwirkung zusammentreffen? Wird es aufgrund der Wechselwirkung doch zu einem Transport von Teilchen kommen, oder wird die Lokalisation auch bei hohen Energien fortbestehen? Bislang gibt es kein theoretisches Modell, das verlässlich vorhersagen könnte, wie sich ein geschlossenes Quantensystem unter diesen Bedingungen entwickelt, wenngleich die Möglichkeit der Lokalisierung theoretisch erwogen wurde.

Um diese Fragen experimentell untersuchen zu können, müssen strenge Anforderungen an die Kontrollierbarkeit und Abschirmung des Systems erfüllt sein. In dem hier beschriebenen Experiment werden extrem kalte Rubidiumatome in ein optisches Gitter geladen, eine Aneinanderreihung mikroskopisch kleiner Lichtfallen, die durch Interferenz mehrerer Laserstrahlen entsteht. Auf das atomare Ensemble wird ein zufällig mit einem Computer erzeugtes Lichtmuster projiziert.

Dies bewirkt, dass die Tiefe der kleinen Lichtfallen nun von Gitterplatz zu Gitterplatz variiert, was einer gewissen Unordnung des Systems entspricht. Die Gruppe von Prof. Bloch hat ihre technischen Methoden mittlerweile so weit entwickelt, dass sie die Position der Atome und die Wechselwirkung zwischen ihnen fast nach Belieben steuern kann. Mit einem hochauflösenden Mikroskop kann der Ort jedes Atoms über das von ihm ausgesandte Fluoreszenzlicht mit höchster Genauigkeit bestimmt werden. Außerdem kann die anfängliche Dichteverteilung genau eingestellt und ihre weitere Entwicklung für verschiedene Zeitintervalle gemessen werden.

Mit diesen Werkzeugen kann das nicht-thermische Verhalten des atomaren Systems mit einer konzeptionell recht einfachen Methode getestet werden. Jeder thermische Gleichgewichtszustand in einem geschlossenen System spiegelt die Symmetrie seines Behälters wider. So bedeckt Wasser, das in eine runde Schüssel geschüttet wird, unmittelbar den ganzen Boden des Gefäßes. Ganz analog erzeugen die Wissenschaftler in dem atomaren Ensemble zu Beginn eine „Dichtestufe“, indem sie die Atome in der einen Hälfte des optischen Gitters mit Laserstrahlung „wegpusten“.

Dann beobachten sie, wie sich die übrig gebliebenen Teilchen in der leeren Hälfte ausbreiten. Solange die durch das Lichtmuster aufgeprägte Unordnung relativ klein ist, vergeht die Dichtestufe schnell, und die anfänglich leere bzw. gefüllte Hälfte gleichen sich immer mehr an. Anders, wenn die aufgeprägte Unordnung größer ist: Dann bleiben Spuren der anfänglichen Unregelmäßigkeiten bestehen, d.h., das System geht auch nach langen Zeitspannen in keinen thermischen Zustand über.

„Wir beobachten, dass dieses nicht-thermische Verhalten oberhalb eines kritischen Wertes für die Unordnung sprunghaft einsetzt“, sagt Christian Groß. „Dieses Fehlen von Thermalisierung ist vor allem deswegen bemerkenswert, weil es in einem System aus interagierenden Teilchen auftritt und sogar bei den hohen Energien, die wir in unserem Experiment testen, bestehen bleibt.“

Die Wissenschaftler deuten diese Beobachtung als den Übergang in eine neue Phase des Systems, die Vielteilchen-Lokalisation. Sie ist auf der einen Seite von grundlegendem Interesse, weil sie nicht durch klassische statistische Mechanik beschrieben werden kann. Auf der anderen Seite könnte das Fortbestehen der Information über den Anfangszustand als Quelle für Quanteninformationstechnologien genutzt werden. „Wir sollten dabei hervorheben, dass wir diese Ergebnisse für eine Systemgröße erzielen, die weit über numerisch zugängliche Skalen hinaus geht“, sagt Jae-yoon Choi, Postdoc am Experiment. Olivia Meyer-Streng

Originalveröffentlichung:

Jae-yoon Choi, Sebastian Hild, Johannes Zeiher, Peter Schauß, Antonio Rubio-Abadal, Tarik Yefsah, Vedika Khemani, David A. Huse, Immanuel Bloch, and Christian Groß
Exploring the many-body localization transition in two dimensions
Science, 24 June 2016, DOI: 10.1126/science.aaf8834 (http://science.sciencemag.org/content/352/6293/1547)

Kontakt:

Dr. Christian Groß
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 32 905 - 713
E-Mail: christian.gross@mpq.mpg.de

Prof. Dr. Immanuel Bloch
Lehrstuhl für Quantenoptik, LMU München
Schellingstr. 4, 80799 München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -138
E-Mail: immanuel.bloch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

„Microbiology and Infection“ - deutschlandweit größte Fachkonferenz in Würzburg

25.04.2017 | Veranstaltungsnachrichten

Auf dem Weg zur lückenlosen Qualitätsüberwachung in der gesamten Lieferkette

25.04.2017 | Verkehr Logistik

Digitalisierung bringt Produktion zurück an den Standort Deutschland

25.04.2017 | Wirtschaft Finanzen