Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenlicht aus Diamant und Plastik

08.04.2013
Einem Team aus Forschern der Berliner Humboldt-Universität und dem Karlsruher Institut für Technologie ist es gelungen, mit einem sehr einfachen Verfahren stabile Quellen für einzelne Lichtquanten herzustellen.

Bei der in dieser Woche in der Open Access Fachzeitschrift Scientific Reports der Nature Publishing Group veröffentlichten Arbeit wählten die Forscher einen ungewöhnlichen Hybridansatz durch Kombination von zwei ganz verschiedenen Materialien.


(a) Prinzip der Herstellung von scheibenförmigen optischen Resonatoren und gebogenen Wellenleitern durch lokale Polymerisierung eines Photolacks durch einen fokussierten Laserstrahl. (b) Rasterelektronenmikroskopische Aufnahme einer Teststruktur. Länge des Skalenbalkens = 5 µm
Abbildung: Oliver Benson


(a) Prinzip der Messung und Erzeugung von Quantenlicht. Ein Diamantsplitter mit einem Farbzentrum wird durch einen Laser optisch angeregt. Die abgegebenen einzelnen Photonen werden durch den Resonator gesammelt und in den Wellenleiter geleitetet, an dessen Enden sie detektiert werden. (b) Rasterfluoreszenzaufnahme der in (a) abgebildeten Struktur. Der fluoreszierende einzelne Diamantsplitter ist eingekreist. Länge des Skalenbalkens = 5 µm
Abbildung: Oliver Benson

Zum einen waren dies kleinste Diamantsplitter. Diamant enthält neben Kohlenstoff auch andere Atome als natürliche Verunreinigungen. Diese Fremdatome sind als so genannte Farbzentren für die gelbliche oder bläuliche Färbung natürlicher Diamanten verantwortlich.

Wegen ihrer geringen Größe von nur einigen wenigen Millionstel Millimetern enthielten die Diamantsplitter bisweilen nur jeweils ein einzelnes Farbzentrum, das dann gezielt mit Hilfe von Laserlicht angeregt werden konnte. Das Farbzentrum gibt die Anregungsenergie dann durch Emission von einzelnen Lichtquanten, oder Photonen, wieder ab.

Die Forscher vermischten nun die Diamantsplitter mit einem speziellen Photolack. Durch Bestrahlung der Lackschicht mit einem fokussierten Laserstrahl konnte der Lack lokal polymerisiert, d.h. in Plastik umgewandelt, werden. Auf diese Weise können nahezu beliebige dreidimensionale Strukturen geschrieben werden, die dann einzelne Diamamtsplitter mit einzelnen Farbzentren als Quantenlichtquellen enthalten.

Das Team konzentrierte sich zunächst auf optische Wellenleiter und Resonatoren, mit denen dann die von den Farbzentren abgegebenen Photonen mit hoher Effizienz eingesammelt und weitergeleitet wurden.

Ein großer Vorteil des neuen hybriden Materialsystems ist zum einen die gut etablierte und sehr preiswerte Herstellungsmethode und zum anderen die unbegrenzte Stabilität der Photonenemission auch bei Zimmertemperatur. Die Forscher arbeiten nun daran, die neuen Strukturen mit anderen optischen Instrumenten zu kombinieren. Auf diese Weise ließen sich zahlreiche Anwendungen im Bereich der hochauflösenden Mikroskopie, der optischen Sensorik oder auch der Quanteninformationsverarbeitung verlässlich und kostengünstig realisieren.

Weitere Informationen:

A. W. Schell, J. Kaschke, J. Fischer, R. Henze, J. Wolters, M. Wegener, O. Benson, Scientific Reports 3:1577, 1-5 (2013)

Kontakt:

Prof. Dr. Oliver Benson
oliver.benson@physik.hu-berlin.de
Weitere Informationen:
http://www.nature.com/srep/2013/130402/srep01577/full/srep01577.html

Constanze Haase | idw
Weitere Informationen:
http://www.hu-berlin.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Perspektiven durch gespiegelte Systeme
05.12.2016 | Friedrich-Schiller-Universität Jena

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie sich Zellen gegen Salmonellen verteidigen

05.12.2016 | Biowissenschaften Chemie

Fraunhofer WKI koordiniert vom BMEL geförderten Forschungsverbund zu Zusatznutzen von Dämmstoffen aus nachwachsenden Rohstoffen

05.12.2016 | Förderungen Preise

Höhere Energieeffizienz durch Brennhilfsmittel aus Porenkeramik

05.12.2016 | Energie und Elektrotechnik