Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantenlego: Materie aus einzelnen Atomen gebastelt

26.02.2015

Heidelberger Physiker haben aus nur zwei Atomen den fundamentalen Baustein eines Vielteilchensystems realisiert

Die Bewegungen mehrerer, miteinander wechselwirkender Körper zu verstehen, gehört zu den zentralen Forschungsfragen in der Physik. Während zunächst das Verständnis der Bahnen von Himmelskörpern im Vordergrund stand, hat diese Fragestellung in quantenmechanischen Vielteilchensystemen, beispielsweise bei der Beschreibung von Elektronen in einem Festkörper, seine moderne Entsprechung gefunden.

Physikern der Universität Heidelberg ist nun der erste Schritt auf einem neuen Weg zur Klärung solcher Zusammenhänge gelungen. In ihrem Experiment mit ultrakalten Lithiumatomen erzeugte die Gruppe um Prof. Dr. Selim Jochim vom Physikalischen Institut einen fundamentalen Baustein, der in Zukunft als Grundlage für die Untersuchung von Vielteilchensystemen dienen soll. Die Ergebnisse wurden in der Fachzeitschrift „Physical Review Letters“ veröffentlicht und mit einer „Editor‘s Suggestion“ ausgezeichnet.

Die Heidelberger Wissenschaftler bedienten sich hierbei einer, wie sie betonen, weltweit einzigartigen Methode, mit der sie kontrolliert Systeme aus wenigen Atomen in einer sogenannten optischen Falle erzeugen können. In den nun veröffentlichten Experimenten fügten die Physiker diesem System noch eine weitere solche Falle hinzu und erlaubten den Atomen, zwischen diesen beiden „Töpfen“ hin und her zu tunneln.

Bei der Untersuchung zweier Atome konnten dabei konkurrierende Effekte zwischen der Bewegung der Atome und ihrer gegenseitigen Wechselwirkung beobachtet werden. Ziehen sich die Atome an, so bilden sie bevorzugt ein Paar, wohingegen Abstoßung dazu führt, dass jedes der Atome sich in einem eigenen Topf befindet.

Dieser hohe Grad an Kontrolle über ein System aus zwei Atomen stimmt die Wissenschaftler optimistisch, in Zukunft auch größere Systeme aus mehr Töpfen und Atomen präparieren zu können. „Uns ist es jetzt gelungen, gewissermaßen einen ersten Lego-Stein zu produzieren, auf den künftig weitere Bausteine aufgesteckt werden können, um ein Vielteilchensystem zu erzeugen“, erklärt Simon Murmann, einer der Doktoranden in der Arbeitsgruppe. „Das Außergewöhnliche daran ist die in den aktuellen Experimenten demonstrierte Einstellbarkeit des Tunnelns und der Wechselwirkung der Atome, die erhebliche Konsequenzen für die Eigenschaften des Vielteilchensystems haben wird“, ergänzt Selim Jochim.

Von besonderem Interesse sind diese Arbeiten, da die an Atomen beobachtete Dynamik vergleichbar ist mit dem Verhalten von Elektronen, die in einem Festkörper von einem Gitterplatz zum nächsten tunneln. So gelang es den Wissenschaftlern, ihr System mithilfe eines Modells zu beschreiben, das ursprünglich für die Leitfähigkeit elektronischer Systeme entwickelt worden war.

Diese Vorgehensweise, quantenmechanische Modelle durch experimentell kontrollierbare Systeme nachzustellen, ist als „Quantensimulation“ bekannt und gilt als Schlüssel zur Lösung von quantenmechanischen Vielteilchenproblemen. Die größte Herausforderung sehen die Heidelberger Physiker darin, auch in großen Systemen jederzeit die Kontrolle über alle Atome zu behalten, um schließlich exakte Messungen durchführen zu können. Mit diesen hoffen die Wissenschaftler zum Verständnis noch ungeklärter Effekte, wie beispielsweise der Hochtemperatursupraleitung, beitragen zu können.

Originalveröffentlichung:
S. Murmann, A. Bergschneider, V. M. Klinkhamer, G. Zürn, T. Lompe, S. Jochim: Two Fermions in a Double Well: Exploring a Fundamental Building Block of the Hubbard Model,
doi: 10.1103/PhysRevLett.114.08040

Kontakt:
Prof. Dr. Selim Jochim
Physikalisches Institut
Tel. +49 6221 54-19472
selim@physi.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Tel. +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Weitere Informationen:

http://www.lithium6.de/?q=user/2

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System
08.12.2016 | Max-Planck-Institut für Radioastronomie

nachricht Rätsel um Mott-Isolatoren gelöst
08.12.2016 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Heimcomputer entdecken rekordverdächtiges Pulsar-Neutronenstern-System

08.12.2016 | Physik Astronomie

Siliziumsolarzelle des ISFH erzielt 25% Wirkungsgrad mit passivierenden POLO Kontakten

08.12.2016 | Energie und Elektrotechnik

Oberleitungs-LKW: Option für einen umweltverträglichen Güterverkehr?

08.12.2016 | Verkehr Logistik