Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantencomputer aus gängigen Halbleitermaterialien

02.12.2015

Physiker der Technischen Universität München, des Los Alamos National Laboratory und der Universität Stanford (USA) spürten in Halbleiter-Nanostrukturen Mechanismen auf, aufgrund derer gespeicherte Informationen verloren gehen können – und stoppten das Vergessen mit Hilfe eines externen Magnetfeldes. Die neu entwickelten Nanostrukturen bestehen aus gängigen Halbleitermaterialien, kompatibel zu üblichen Herstellungsprozessen.

Quantenbits, kurz Qubits, sind die Grundelemente der „Quanten-Informationstechnologie“ (QIT), die möglicherweise die Zukunft der Computer darstellt. Weil er Probleme quantenmechanisch verarbeitet, könnte ein solcher Quantencomputer einmal komplexe Probleme mit weit höherer Geschwindigkeit lösen als heutige, so die Hoffnung.


Elektron im Quanten-Punkt, beeinflusst von Kernspins der Umgebung

Grafik: Fabian Flassig / TUM


Alexander Bechthold in seinem Labor im Walter Schottky Institut der TU München

Andreas Battenberg / TUM

Prinzipiell gibt es verschiedene Möglichkeiten, solche Qubits zu realisieren: Photonen kommen hier ebenso in Frage wie gefangene Ionen oder Atome, deren Zustand jeweils gezielt mit Hilfe eines Lasers verändert werden kann. Die Kernfrage für eine mögliche Anwendung als Speicherbaustein ist, wie lange sich Informationen in einem System sichern lassen und welche Mechanismen zum Verlust einer gespeicherten Information führen.

Physiker um Alexander Bechtold und Professor Jonathan Finley vom Walter-Schottky-Institut der Technischen Universität München und des Exzellenzclusters Nanosystems Initiative Munich (NIM) haben nun ein aus einem einzelnen Elektron bestehendes System vorgestellt, welches in einer Halbleiter-Nanostruktur gefangen ist. Informationsträger ist hierbei der Elektronenspin.

Die Forscher konnten einerseits verschiedene Verlustmechanismen erstmals exakt nachweisen und andererseits zeigen, dass sich die gespeicherte Information mit Hilfe eines starken, äußeren Magnetfelds dennoch erhalten lässt.

Elektron gefangen im Quanten-Dot

Die TUM-Physiker bedampften für ihre Nanostruktur ein Substrat aus Gallium-Arsenid mit Indium-Gallium-Arsenid. Aufgrund der unterschiedlichen Gitterabstände beider Halbleitermaterialien entsteht am Übergang eine Verspannung im Kristallgitter. Das System bildet daher in regelmäßigen Abständen wenige Nanometer große „Hügel“, sogenannte Quanten-Dots.

Kühlt man die Quantenpunkte auf die Temperatur flüssigen Heliums und regt sie optisch an, ist es möglich, ein einzelnes Elektron gezielt in diesen Quanten-Dots gefangen zu halten. Die Spin-Zustände des Elektrons lassen sich dabei als Informationsspeicher nutzen. Laserpulse können sie optisch von außen lesen und verändern. Daher stellt das System einen idealen Grundbaustein zum Aufbau künftiger Quantencomputer dar.

Spin-up oder Spin-down entsprechen hierbei den klassischen Informationseinheiten 0 und 1, dazu kommen aber außerdem noch die Zwischenzustände aus den quantenmechanischen Überlagerungen von up und down.

Bisher unbekannte Verlustmechanismen

Allerdings gibt es ein Problem: „Wir haben herausgefunden, dass die Verspannungen im Halbleitermaterial zu einem neuen bis vor kurzem noch unbekannten Verlustmechanismus führen“, sagt Alexander Bechtold. Die Verspannungen erzeugen nämlich winzige elektrische Felder im Halbleiter, die sich auf den Spin der Atomkerne auswirken.

„Das ist eine Art piezoelektrischer Effekt“, sagt Bechtold. „Es kommt dabei zu unkontrollierten Fluktuationen der Kernspins.“ Diese können wiederum den Spin des Elektrons, also die gespeicherte Information, verändern. Innerhalb von hundert Nanosekunden würde sie verloren gehen.

Darüber hinaus konnte das Team um Alexander Bechtold noch weitere Verlustmechanismen nachweisen, etwa dass generell jeder Elektronenspin von den Spins der ihn umgebenden etwa 100.000 Atomkerne beeinflusst wird.

Rettung vor dem quantenmechanischen Vergessen

„Beide Verlustkanäle lassen sich jedoch abschalten, wenn wir ein etwa 1,5 Tesla starkes Magnetfeld anlegen“, sagt Bechtold. „Das entspricht der Magnetfeldstärke eines starken Permanentmagneten. Damit stabilisieren wir die Kernspins, und die Informationen bleiben gespeichert.“

„Das System ist insgesamt äußerst vielversprechend“, so Jonathan Finley, Leiter der Forschungsgruppe. „Die Halbleiter-Quanten-Dots haben den Vorteil, ideal mit bestehender Computertechnologie zu harmonieren, da sie aus ähnlichen Halbleiter-Materialien bestehen.“ Sie ließen sich sogar mit elektrischen Kontakten versehen und so nicht nur optisch mit dem Laser, sondern zusätzlich mit Hilfe etwa von Spannungspulsen ansteuern.

Die Arbeiten wurden gefördert mit Mitteln der Europäischen Gemeinschaft (S3 Nano und BaCaTeC), des US Department of Energy, des US Army Research Office (ARO), der Deutschen Forschungsgemeinschaft (Exzellenzcluster Nanosystems Initiative Munich (NIM) und SFB 631), der Alexander von Humboldt Stiftung und des TUM Institute for Advanced Study (Focus Group Nanophotonics and Quantum Optics).

Publikation:

Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot; Alexander Bechtold, Dominik Rauch, Fuxiang Li, Tobias Simmet, Per-Lennart Ardelt, Armin Regler, Kai Müller, Nikolai A. Sinitsyn and Jonathan J. Finley; Nature Physics, 11, 1005-1008 (2015) – DOI: 10.1038/nphys3470

Kontakt:

Prof. Dr. Jonathan J. Finley
Walter Schottky Institut
Technische Universität München
85748 Garching, Germany
Tel.: +49 89 289 11481
E-Mail: jonathan.finley@wsi.tum.de

Weitere Informationen:

http://www.nature.com/nphys/journal/vaop/ncurrent/full/nphys3470.html Publikation
http://www.wsi.tum.de Website des Walter Schottky Instituts
http://www.tum.de/die-tum/aktuelles/pressemitteilungen/kurz/article/32776/ Presseinformation der TUM

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Flashmob der Moleküle
19.01.2017 | Technische Universität Wien

nachricht Verkehrsstau im Nichts
19.01.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Flashmob der Moleküle

19.01.2017 | Physik Astronomie

Tollwutviren zeigen Verschaltungen im gläsernen Gehirn

19.01.2017 | Medizin Gesundheit

Fraunhofer-Institute entwickeln zerstörungsfreie Qualitätsprüfung für Hybridgussbauteile

19.01.2017 | Verfahrenstechnologie