Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Vielteilchensysteme auf dem Weg zurück zum Gleichgewicht

23.02.2015

Fortschritte in der experimentellen und theoretischen Physik ermöglichen ein tieferes Verständnis der Dynamik und Eigenschaften von Quanten-Vielteilchensystemen

Bedenkt man, wie viele Teilchen in einem Kubikzentimeter Luft oder Festkörper enthalten sind (ca. 10 hoch 19 bis 10 hoch 23), so ist es eigentlich kaum vorstellbar, dass Physiker heute im Labor Ensembles aus nur wenigen Hundert oder sogar nur einer Handvoll Atome präparieren können. Noch dazu haben sie ihre Methoden so verfeinert, dass sie die Teilchen einzeln oder als Gesamtheit gezielt manipulieren und die Wechselwirkungen zwischen ihnen steuern können.


Illustration der verschiedenen Möglichkeiten, Quanten-Vielteilchensysteme zu beeinflussen.

(Abteilung Theorie, MPQ)

Aufgrund neuer numerischer Verfahren, leistungsfähiger Computer, sowie neuer theoretischer Modelle hat die theoretische Beschreibung solcher Quanten-Vielteilchensysteme nicht weniger Fortschritte gemacht. In einem jüngst in der Zeitschrift Nature Physics (3. Februar 2015) veröffentlichten Artikel geben Prof. Dr. Jens Eisert, Mathis Friesdorf (beide vom Dahlem Center for Complex Quantum Systems, Freie Universität Berlin) und Dr. Christian Gogolin, Postdoc-Wissenschaftler in der Abteilung Theorie von Prof. Ignacio Cirac am MPQ (Garching) und Research Fellow am ICFO (Barcelona), einen Überblick, welche Arten von Systemen bereits realisiert werden konnten, wie deren Verhalten theoretisch gedeutet wird und welche Entwicklungen in Zukunft zu erwarten sind.

Besonders aufschlussreich bei der Untersuchung von Quanten-Vielteilchensystemen sind die Prozesse, die ablaufen, wenn das System nach einer externen Störung wieder in einen Gleichgewichtszustand strebt. Hier gilt es die Brücke zu schlagen zwischen der mikroskopischen Beschreibung der lokalen, quantenmechanischen Dynamik auf der einen Seite, und der bekannten statistischen Behandlung großer Teilchenensembles auf der anderen. Welcher Ansatz die Oberhand behält, hängt entscheidend von der Größe des Systems und der Art der Wechselwirkung zwischen den Teilchen ab.

In vielen Experimenten werden heute lokale Systeme aus wenigen Teilchen realisiert, zwischen denen Wechselwirkungen mit sehr kurzer Reichweite herrschen. Von besonderer Bedeutung hierbei sind Experimente mit ultrakalten Quantengasen in sogenannten optischen Gittern (dabei handelt es sich im Wesentlichen um Gitter aus stehenden Wellen, die durch gegenläufige Laserstrahlen erzeugt werden). Solche Systeme können z.B. als Modelle für ferromagnetische Materialien dienen.

Ein sehr interessanter Gesichtspunkt in der Festkörperphysik, der ebenfalls mit diesen Systemen untersucht werden kann, ist Transport – etwa der von Elektronen und damit elektrischer Ladung in einem Kristall. In enger Zusammenarbeit finden experimentelle und theoretische Physiker dabei z.B. heraus, von welchen Parametern Eigenschaften wie die Leitfähigkeit bestimmt werden, oder wie Defekte und störende Einflüsse die Mobilität von Teilchen beeinflussen.

Größeren Quanten-Vielteilchensystemen nähern sich die Theoretiker gerne mit statistischen, der Thermodynamik entlehnten Methoden. Von besonderer Bedeutung ist hier die zeitliche Entwicklung des Systems, wenn man globale Parameter – etwa die Temperatur oder externe Felder – verändert. Eine solche Änderung kann ganz plötzlich und einmalig stattfinden, aber sich auch über einen gewissen Zeitraum hinziehen oder periodisch wiederholen.

Die Wissenschaftler gehen dabei der Frage nach, ob, wie und nach welchen Zeitspannen das System einen neuen Gleichgewichtszustand erreicht hat. In vielen Systemen lassen sich bei bestimmten „kritischen“ Werten der Parameter Übergänge in eine andere „Phase“ beobachten, bei denen sich die Systemeigenschaften dramatisch ändern – ähnlich dem Schmelzen von Eis oberhalb von Null Grad Celsius. Die Dynamik solcher Phasenübergänge zu verstehen ist für Theoretiker auch heute noch eine große Herausforderung.

Bewährt haben sich Quanten-Vielteilchensysteme bereits als Simulatoren von großen Systemen, z.B. mehrdimensionalen Gittersystemen, deren Nicht-Gleichgewichtsverhalten mit analytischen und numerischen Verfahren nicht mehr erfasst werden kann. Experimentelle Systeme mit ultrakalten Atomen in optischen Gittern stellen hier analoge Modelle dar, mit denen sich diese Grenzen überwinden lassen. In diesem Sinne können die Systeme auch als analoge Quantencomputer dienen, deren Leistung die von klassischen Computern bei bestimmten Aufgaben übertrifft.

Bei allen Fortschritten in der Erforschung von Quanten-Vielteilchensystemen sind noch viele Fragen offen. Zwar sind einzelne Schritte auf dem Weg in den Gleichgewichtszustand mittlerweile verstanden, doch wovon die Zeitskalen abhängen, auf denen diese Relaxationsprozesse ablaufen, ist bislang nur unzureichend verstanden. Darüber hinaus möchten die Wissenschaftler in Zukunft nicht nur geschlossene Systeme untersuchen, sondern auch solche, in denen es durch die Wechselwirkung mit der Umgebung zu Rauschen und Dissipation kommt. Diese an sich schädlichen Prozesse könnten, wenn sie wohl kontrolliert sind, genutzt werden, um interessante Materiezustände zu präparieren. Olivia Meyer-Streng

Originalveröffentlichung:
J. Eisert, M. Friesdorf and C. Gogolin
Quantum many-body systems out of equilibrium
Nature Physics, 3 February 2015, DOI:10.1038/Nphys3215

Kontakt

Prof. Dr. Ignacio Cirac
Honorarprofessor, TU München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Telefon: +49 (0)89 / 32 905 -705/-736
Telefax: +49 (0)89 / 32 905 -336
E-Mail: ignacio.cirac@mpq.mpg.de

Dr. Christian Gogolin
ICFO - The Institute of Photonic Sciences
Mediterranean Technology Park,
Av. Carl Friedrich Gauss, 3,
08860 Castelldefels (Barcelona), Spanien
Telefon: +34 935 54 22 37
E-Mail: christian.gogolin@icfo.es

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie