Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quanten-Vielteilchensysteme auf dem Weg zurück zum Gleichgewicht

23.02.2015

Fortschritte in der experimentellen und theoretischen Physik ermöglichen ein tieferes Verständnis der Dynamik und Eigenschaften von Quanten-Vielteilchensystemen

Bedenkt man, wie viele Teilchen in einem Kubikzentimeter Luft oder Festkörper enthalten sind (ca. 10 hoch 19 bis 10 hoch 23), so ist es eigentlich kaum vorstellbar, dass Physiker heute im Labor Ensembles aus nur wenigen Hundert oder sogar nur einer Handvoll Atome präparieren können. Noch dazu haben sie ihre Methoden so verfeinert, dass sie die Teilchen einzeln oder als Gesamtheit gezielt manipulieren und die Wechselwirkungen zwischen ihnen steuern können.


Illustration der verschiedenen Möglichkeiten, Quanten-Vielteilchensysteme zu beeinflussen.

(Abteilung Theorie, MPQ)

Aufgrund neuer numerischer Verfahren, leistungsfähiger Computer, sowie neuer theoretischer Modelle hat die theoretische Beschreibung solcher Quanten-Vielteilchensysteme nicht weniger Fortschritte gemacht. In einem jüngst in der Zeitschrift Nature Physics (3. Februar 2015) veröffentlichten Artikel geben Prof. Dr. Jens Eisert, Mathis Friesdorf (beide vom Dahlem Center for Complex Quantum Systems, Freie Universität Berlin) und Dr. Christian Gogolin, Postdoc-Wissenschaftler in der Abteilung Theorie von Prof. Ignacio Cirac am MPQ (Garching) und Research Fellow am ICFO (Barcelona), einen Überblick, welche Arten von Systemen bereits realisiert werden konnten, wie deren Verhalten theoretisch gedeutet wird und welche Entwicklungen in Zukunft zu erwarten sind.

Besonders aufschlussreich bei der Untersuchung von Quanten-Vielteilchensystemen sind die Prozesse, die ablaufen, wenn das System nach einer externen Störung wieder in einen Gleichgewichtszustand strebt. Hier gilt es die Brücke zu schlagen zwischen der mikroskopischen Beschreibung der lokalen, quantenmechanischen Dynamik auf der einen Seite, und der bekannten statistischen Behandlung großer Teilchenensembles auf der anderen. Welcher Ansatz die Oberhand behält, hängt entscheidend von der Größe des Systems und der Art der Wechselwirkung zwischen den Teilchen ab.

In vielen Experimenten werden heute lokale Systeme aus wenigen Teilchen realisiert, zwischen denen Wechselwirkungen mit sehr kurzer Reichweite herrschen. Von besonderer Bedeutung hierbei sind Experimente mit ultrakalten Quantengasen in sogenannten optischen Gittern (dabei handelt es sich im Wesentlichen um Gitter aus stehenden Wellen, die durch gegenläufige Laserstrahlen erzeugt werden). Solche Systeme können z.B. als Modelle für ferromagnetische Materialien dienen.

Ein sehr interessanter Gesichtspunkt in der Festkörperphysik, der ebenfalls mit diesen Systemen untersucht werden kann, ist Transport – etwa der von Elektronen und damit elektrischer Ladung in einem Kristall. In enger Zusammenarbeit finden experimentelle und theoretische Physiker dabei z.B. heraus, von welchen Parametern Eigenschaften wie die Leitfähigkeit bestimmt werden, oder wie Defekte und störende Einflüsse die Mobilität von Teilchen beeinflussen.

Größeren Quanten-Vielteilchensystemen nähern sich die Theoretiker gerne mit statistischen, der Thermodynamik entlehnten Methoden. Von besonderer Bedeutung ist hier die zeitliche Entwicklung des Systems, wenn man globale Parameter – etwa die Temperatur oder externe Felder – verändert. Eine solche Änderung kann ganz plötzlich und einmalig stattfinden, aber sich auch über einen gewissen Zeitraum hinziehen oder periodisch wiederholen.

Die Wissenschaftler gehen dabei der Frage nach, ob, wie und nach welchen Zeitspannen das System einen neuen Gleichgewichtszustand erreicht hat. In vielen Systemen lassen sich bei bestimmten „kritischen“ Werten der Parameter Übergänge in eine andere „Phase“ beobachten, bei denen sich die Systemeigenschaften dramatisch ändern – ähnlich dem Schmelzen von Eis oberhalb von Null Grad Celsius. Die Dynamik solcher Phasenübergänge zu verstehen ist für Theoretiker auch heute noch eine große Herausforderung.

Bewährt haben sich Quanten-Vielteilchensysteme bereits als Simulatoren von großen Systemen, z.B. mehrdimensionalen Gittersystemen, deren Nicht-Gleichgewichtsverhalten mit analytischen und numerischen Verfahren nicht mehr erfasst werden kann. Experimentelle Systeme mit ultrakalten Atomen in optischen Gittern stellen hier analoge Modelle dar, mit denen sich diese Grenzen überwinden lassen. In diesem Sinne können die Systeme auch als analoge Quantencomputer dienen, deren Leistung die von klassischen Computern bei bestimmten Aufgaben übertrifft.

Bei allen Fortschritten in der Erforschung von Quanten-Vielteilchensystemen sind noch viele Fragen offen. Zwar sind einzelne Schritte auf dem Weg in den Gleichgewichtszustand mittlerweile verstanden, doch wovon die Zeitskalen abhängen, auf denen diese Relaxationsprozesse ablaufen, ist bislang nur unzureichend verstanden. Darüber hinaus möchten die Wissenschaftler in Zukunft nicht nur geschlossene Systeme untersuchen, sondern auch solche, in denen es durch die Wechselwirkung mit der Umgebung zu Rauschen und Dissipation kommt. Diese an sich schädlichen Prozesse könnten, wenn sie wohl kontrolliert sind, genutzt werden, um interessante Materiezustände zu präparieren. Olivia Meyer-Streng

Originalveröffentlichung:
J. Eisert, M. Friesdorf and C. Gogolin
Quantum many-body systems out of equilibrium
Nature Physics, 3 February 2015, DOI:10.1038/Nphys3215

Kontakt

Prof. Dr. Ignacio Cirac
Honorarprofessor, TU München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Telefon: +49 (0)89 / 32 905 -705/-736
Telefax: +49 (0)89 / 32 905 -336
E-Mail: ignacio.cirac@mpq.mpg.de

Dr. Christian Gogolin
ICFO - The Institute of Photonic Sciences
Mediterranean Technology Park,
Av. Carl Friedrich Gauss, 3,
08860 Castelldefels (Barcelona), Spanien
Telefon: +34 935 54 22 37
E-Mail: christian.gogolin@icfo.es

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Marine Pilze – hervorragende Quellen für neue marine Wirkstoffe?

28.06.2017 | Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

EUROSTARS-Projekt gestartet - mHealth-Lösung: time4you Forschungs- und Entwicklungspartner bei IMPACHS

28.06.2017 | Unternehmensmeldung

Proteine entdecken, zählen, katalogisieren

28.06.2017 | Biowissenschaften Chemie

Neue Scheinwerfer-Dimension: Volladaptive Lichtverteilung in Echtzeit

28.06.2017 | Automotive